孟州市光宇皮业有限公司 2023 年 土壤及地下水环境自行监测报告

建设单位: 孟州市光宇皮业有限公司

编制单位:河南晨颉检验技术有限公司

二零二三年七月

目 录

— ,	工作背景	1
	1.1工作由来	1
	1.2工作依据	1
	1.2.1 法律法规及政策	1
	1.2.2 技术规范	1
	1.3 工作内容及技术路线	2
_,	企业概况	3
	2.1 企业基本情况	3
	2.2 企业用地已有的环境调查与监测情况	4
三、	地勘资料及地表水资源	28
	3.1 地质信息	28
	3.2 水文地质信息	33
	3.2.1 地下水赋存条件	33
	3.2.2 地下水类型及富水性	33
3.3	地表水资源	40
四、	企业生产及污染防治情况	41
	4.1 企业生产概况	41
	4.2 生产工艺流程及工艺流程产污图	42
	4.3产污环节分析及治理措施	45
	4.3.1 废气的产生及治理措施	
	4.3.2 废水的产生及治理措施	46
	4.3.3 固体废弃物产生及治理措施	
	4.4 企业生产设施设备布设情况	48
	表 4-5 治理设施一览表	49
五、	重点监测单元识别与分类	51
	5.1 重点单元情况	51
	5.2 识别/分类结果及原因	54
	5.3 关注污染物	54
六、	监测点位布设方案	56
	6.1 重点单元及相应监测点/监测井的布设位置	56
	图 6-1 土壤及地下水监测点位示意图	57
	6.2 各点位布设原因	58
	6.3 各点位监测因子及选取原因	
七、	样品采集、保存、流转与制备	60
	7.1 采样方法及程序	60
	7.2 样品保存、流转与制备	62
八、	监测分析方法及仪器	
	8.1 土壤监测分析方法及使用仪器见表 8-1	
	8.2 地下水监测分析方法及使用仪器见表 8-2。	68
九、	质量保证与质量控制	70
	9.1 自行监测质量体系	70

9.2 监测方案制定的质量保证与控制	70
9.3样品采集、保存、流转、制备的质量保证与控制	71
9.4样品分析的质量保证与控制	72
十、 监测结果及评价	73
10.1 土壤监测结果及评价	73
10.2 地下水监测结果及评价	87
十一、 监测总结论	90
十二、 建议与措施	90
附图 1 营业执照	94
附图 2 资质证书	93
附图 3 采样照片	94
附图 4 项目	97
附件 12023 年土壤污染重点监管单位名录单	98
附件 2 质控报告	103
附件 3 2023 数据报告	122
附件 4 2022 年数据报告	149
附件 5 2021 年土壤及地下水检测报告	171
附件 6 2020 年土壤及地下水检测报告	183
附件 7 2019 年土壤及地下水检测报告	191
附件 8 锅炉废气	199

一、工作背景

1.1 工作由来

土壤污染问题已经成为继大气污染、水污染之后引起全社会高度关注、亟需解决的重大环境问题,为进一步贯彻落实《土壤污染防治行动计划》(国发[2016]31号))、《河南省清洁土壤行动计划》豫政【2017】13号、焦环文[2023]6号《关于公布焦作市2023年土壤污染重点监管名录的通知》的通知等相关文件要求,切实推动土壤污染防治的开展,落实企业污染防治的主体责任,了解企业在生产过程中可能造成的环境污染问题,为积极响应环保部门的要求,按照要求需编制土壤及地下水环境自行监测方案。孟州市光宇皮业有限公司委托河南晨颉检验技术有限公司对该项目所在地块开展场地环境质量现状调查,对该场地土壤环境及地下水污染情况进行监测,为该场地的后续管理提供必要的数据支撑。

本次检测为新标准发布后的后续监测。为此孟州市光宇皮业有限公司于 2023 年 06 月委托河南晨颉检验技术有限公司开展"孟州市光宇皮业有限公司土壤及地下水自行监测"工作。接受委托后,我单位立即组织相关技术人员进行收集和查阅历史资料、现场踏勘、了解本企业概况,并对相关人员进行访谈。于 2023 年 06 月 15 日对现场进行采样。根据检测结果编制了本土壤及地下水自行监测报告。

1.2 工作依据

- 1.2.1 法律法规及政策
- ①《中华人民共和国土壤污染防治法》(中华人民共和国主席令第八号,2019年01月01日起实施);
- ②《中华人民共和国水污染防治法》(中华人民共和国主席令第七十号,2018年01月01日起实施);
 - ③《国务院关于印发土壤污染防治行动计划的通知》 国发【2016】31号;
 - ④《河南省清洁土壤行动计划》豫政【2017】13号;
- ⑤《焦作市生态环境局关于公布焦作市 2023 年土壤污染重点监管单位名录的通知》 焦环文【2023】6号:
 - ⑥《河南省土壤污染防治条例》(2021.05.28)。
 - 1.2.2 技术规范
 - ①《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018);
 - ②《地下水质量标准》(GB/T 14848-2017);

- ③《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019);
- ④《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019);
- ⑤《建设用地土壤污染场地风险评估技术导则》(HJ25.3-2019);
- ⑥《土壤环境监测技术规范》(HJ/T 166-2004);
- (7)《地下水环境监测技术规范》(HJ/T 164-2014);
- ⑧《建设用地土壤环境调查评估技术指南》,环境保护部,2017年12月14日::
- ⑨《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021);
- ⑩《重点行业企业用地调查质量保证和质量控制技术规定(试行)》
- ① 《排污单位自行监测技术指南 总则》(HJ 819-2017)

1.3 工作内容及技术路线

1.3.1 工作内容

河南晨颉检验技术有限公司受孟州市光宇皮业有限公司委托对其开展土壤及地下水自行监测工作,通过对项目所在地进行现场勘察、采样和检测,评估项目场地内土壤和地下水环境质量,以期了解掌握项目地块土壤和地下水污染状况的基本情况,识别项目地块土壤污染状况。

按照《重点监管单位土壤污染隐患排查指南(试行)》逐一排查,重点对生产区、原材料及废物堆存区、储放区、转运区开展排查。重点排查对象(可能涉及土壤污染的工业活动和设施): 散装液体存储(地下储罐、地表储罐、离地的悬挂储罐、水坑或渗坑); 散装液体转运(管道运输、泵传输); 散装和包装材料的存储与运输(散装商品的存储与运输、固态物质的存储与运输、液态的存储与运输); 其他活动(污水处理与排放、紧急收集装置、车间存储)等。

土壤和地下水自行监测工作大致可分为四个阶段,首先是排查企业重点区域及重点 设施设备,确定是否存在土壤污染隐患,若确定存在土壤污染隐患则为该单位进行风险 分级,编制监测方案,之后根据监测方案取样分析,最后分析监测结果编制监测报告。

1.3.2 技术路线

根据《工业企业土壤和地下水自行监测技术指南》(HJ 1209-2021)内容要求,工作程序如下。

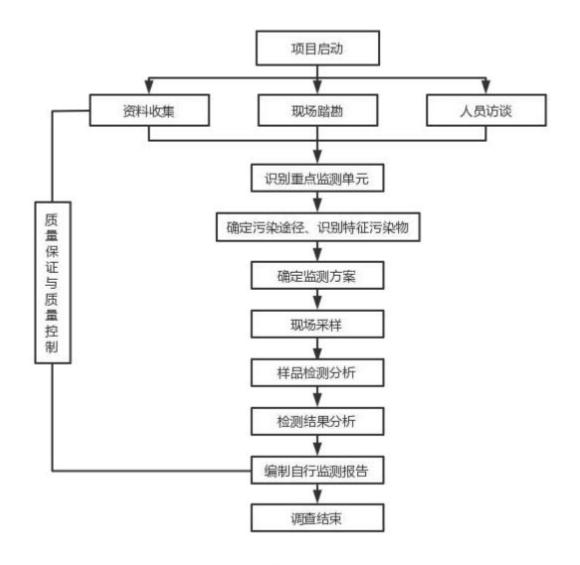


图 1-1 工作技术路线

二、企业概况

2.1 企业基本情况

孟州市光宇皮业有限公司位于孟州市南庄镇毛皮产业园内,厂区中心位置经纬度为北纬34°53′58.12″,东经112°50′57.26″。孟州市光宇皮业有限公司成立于1997年,位于孟州市南庄镇毛皮产业园内,注册资本300万元人民币,原有羊皮加工能力为90万张/年。由于企业现有厂区位于村内,厂区狭小、发展空间不足。为使企业进一步发展壮大,结合《孟州市毛皮产业发展规(2013-2018)》

和《孟州市人民政府办公室关于孟州市毛皮产业布局有关问题的通知》要求,孟州市光宇皮业有限公司决定投资 50000 万元,按照"企居分离、集中鞣制、清洁生产、集中治污"要求,牵头将南庄镇 12 家生皮鞣制企业的涉水工段搬迁整合(鞣制规模合计 517 万张/年),进行清洁生产工艺改造,在南庄镇毛皮产业园内建设孟州市光宇皮业有限公司鞣制清洁生产工艺改造项目,加工规模为 500 万张/年。

本项目建成之后,成为南庄镇毛皮加工企业按照"企居分离、集中鞣制、清洁生产、集中治污"要求进行鞣制清洁生产工艺改造成功的一个示范性企业,从而推动了南庄镇毛皮产业的良性发展,对区域经济发展和环境改善都具有积极意义。工程以绵羊皮为原料,经鞣前准备、鞣制、整饰三个工段制成成品,生产规模为500万张/a,其中铬鞣300万张/a,植鞣200万张/a。具体信息见表2-1。

序号 信息项目 企业名称 孟州市光宇皮业有限公司 1 2 法定代表人 丁合光 3 企业地址 孟州市南庄镇毛皮产业园内 地理位置 北纬 34° 53′ 58. 12″, 东经 112° 50′ 57. 26″ 4 企业类型 有限责任公司 5 6 企业规模 铬鞣 300 万张/a, 植鞣 200 万张/a 行业类型及代码 193 毛皮鞣制及制品加工 7 所属工业区或集聚区 毛皮产业园 8 地块占地面积 9 98 亩 现使用权属 孟州市光宇皮业有限公司 10

表 2-1 企业基本信息

2.2 企业用地已有的环境调查与监测情况

2018年至2021年,洛阳黎明检测服务有限公司对孟州市光宇皮业有限公司土壤及地下水进行了监测,2022河南省科龙环境工程有限公司对孟州市光宇皮

业有限公司土壤及地下水进行了监测,结果显示该企业土壤检测因子结果均满足《土壤环境质量建设用地土壤污染风险管控标准》(试行)(GB36600-2018)中筛选值第二类用地要求;地下水检测因子结果均满足《地下水质量标准》(GB/T 14848-2017)Ⅲ类标准要求。历史数据如下,2021 年土壤及地下水采样点位与2020、2019、2018 年一致。在2021年11月13日发布了《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021),所以此次历史数据分析为2018年-2021年对比分析,2022年单独分析。

2018年-2021年土壤及地下水采样点位如下

表 2-2 监测点位坐标

		<u>\$</u>	坐标
!	监测点位	东经	北纬
	1#背景监测点	112°50′54"	34°54′2"
地下水	2#监测点	112°50′59"	34°53′54"
	1#背景监测点	112°50′44"	34°54′15"
	2#监测点	112°50′54″	34°54′2"
	3#监测点	112°50′54"	34°53′58"
	4#监测点	112°50′53"	34°53′55"
土壤	5#监测点	112°50′55"	34°53′55"
上埭	6#监测点	112°50′56"	34°54′1"
	7#监测点	112°5′3"	34°53′59"
	8#监测点	112°50′57"	34°53′58"
	9#监测点	112°50′56"	34°53′56"
	10#监测点	112°51′3"	34°54′0"
	11#监测点	112°51′2"	34°53′56"
	12#监测点	112°51′2"	34°53′55"

表 2-3 2018-2021 年光宇皮业土壤自行监测结果对比(pH 无量纲, 其他项目单位: mg/kg)

项目	时间	T1 背景 点	T2	Т3	T4	Т5	Т6	Т7	Т8	Т9	T10	T11	T12	标准限值 (GB 36600-2018 第二类用地筛选值)
	2018	7.41	7.53	7.62	7.55	7.64	7.61	7.71	7.38	7.12	7.15	7.04	7.26	
	2019	8.68	8.71	8.57	8.31	8.74	8.78	8.39	8.88	8.87	8.61	8.60	8.58	
pН	2020	8.4	8.5	8.7	8.5	8.2	8.8	8.5	8.5	8.7	8.1	8.4	8.4	/
	2021	8.6	8.3	8.7	8.3	8.6	8.6	8.1	8.7	8.6	8.2	8.7	8.5	
	2018	12.3	11.5	11.8	12.9	13.5	12.0	11.9	9.6	4.5	7.7	14.8	13.9	
	2019	28.3	22	22.2	28.8	22.3	23.8	26.9	25	26.9	27.5	26	24.4	
铅	2020	22.7	17.6	20.5	16.5	25.2	21.1	24.1	20.9	22.7	26.5	24.0	23.2	800
	2021	20.7	25.0	25.6	21.1	25.5	23.5	25.1	22.8	25.9	22.4	24.8	20.4	
	2018	0.4	0.37	0.36	0.31	0.27	0.22	0.30	0.24	0.15	0.11	0.13	0.10	
	2019	0.036	0.031	0.03	0.044	0.03	0.039	0.043	0.032	0.0.32	0.043	0.034	0.033	
镉	2020	0.19	0.13	0.17	0.15	0.11	0.18	0.20	0.19	0.13	0.18	0.11	0.19	65
	2021	0.10	0.16	0.11	0.16	0.11	0.17	0.11	0.16	0.11	0.17	0.17	0.16	
	2018	145	143	145	140	147	153	217	210	218	213	218	211	
	2019	79.1	75.1	119	206	93	76.9	83.9	77.6	86.7	81.1	78	76.2	
铬	2020	70.7	73.3	107	88.9	82.2	72.4	72.9	77.2	74.4	79.9	72.8	76.6	/
	2021	66.3	74.2	71.2	92.9	77.3	70.3	70.9	80.3	74.0	81.5	72.4	102	
	2018	24	22	21	26	28	24	27	28	27	26	27	24	
铜	2019	32.2	26.3	30.5	33.8	29.5	30.8	26.9	30.2	30.8	30.4	29.6	24.5	18000

	2020	28.6	23.6	26.6	21.6	28.7	26.5	26.4	25.3	28.2	31.7	26.4	24.8	
	2021	24.8	24.4	26.8	25.3	29.0	23.4	27.2	28.0	27.9	28.0	24.5	27.9	
	2018	94.1	91.0	83.8	88.4	116	105	98.0	97.2	137	121	100	113	
锌	2019	80.4	69.1	87.1	84.3	75.4	76.4	71.1	74	80.2	73.1	76.2	71.5	,
14	2020	71.1	59.4	78.5	56.0	89.4	68.9	67.1	71.4	71.8	77.8	67.9	64.6	,
	2021	66.8	65.5	74.2	83.5	74.4	64.8	73.6	73.8	72.4	72.8	67.1	74.3	
	2018	36	39	41	48	52	46	36	38	47	42	41	45	
镍	2019	37.6	31.9	32	38	38.7	41.2	31.8	41.2	44.9	34.1	34.7	29	
	2020	32.0	30.6	28.1	26.6	41.8	33.6	32.2	36.6	38.7	35.7	33.8	31.3	900
	2021	31.8	29.4	31.3	32.2	33.1	27.9	30.2	42.2	33.2	42.9	28.7	27.9	
	2018	0.017	0.018	0.022	0.024	0.016	0.019	0.016	0.024	0.017	0.018	0.022	0.015	
汞	2019	0.013	0.003	0.011	0.014	0.009	0.011	0.015	0.009	0.028	0.022	0.019	0.015	38
	2020	0.022	0.026	0.025	0.028	0.033	0.032	0.019	0.021	0.037	0.018	0.025	0.036	36
	2021	0.008	0.017	0.031	0.032	0.030	0.024	0.034	0.010	0.020	0.010	0.021	0.006	
	2018	3.36	3.28	3.30	3.42	3.48	3.22	3.35	3.16	3.22	3.26	3.18	3.34	
	2019	10.8	10.1	10	11.7	12.1	12.3	9.0	13.4	12.6	9.8	10.2	8.5	
砷	2020	10.6	10.3	9.4	9.1	12.3	10.1	9.0	10.7	11.1	11.2	9.4	8.8	60
	2021	9.8	8.5	9.6	9.7	9.5	8.9	9.6	12.8	10.3	12.4	8.2	9.0	
	2019	652	586	580	708	611	611	622	619	651	635	635	558	
锰	2020	595	484	510	483	598	559	594	553	580	666	589	585	/
	2021	530	557	565	532	600	543	559	604	594	602	551	514	

	2019	14.6	12.2	13.5	16.1	13.7	13.9	12.9	14.2	15.1	14	13.7	12.1	70
钻	2020	14.0	12.9	12.3	11.9	14.8	13.9	13.5	13.3	13.8	15.5	13.7	13.4	70
	2021	13.3	13.6	13.2	13.7	14.5	12.7	13.9	14.8	14.5	14.8	13.1	13.0	
	2019	0.498	0.531	0.457	0.485	0.393	0.485	0.365	0.467	0.474	0.583	0.485	0.544	
砸	2020	0.090	0.101	0.110	0.107	0.109	0.112	0.131	0.101	0.118	0.099	0.115	0.101	/
	2021	0.135	0.227	0.201	0.144	0.228	0.213	0.196	0.206	0.195	0.211	0.160	0.216	
	2019	90	78.5	79.6	99.4	87.2	89.4	90.3	91.2	93	86.7	89	78.6	
钥	2020	84.6	77.7	75.4	70.3	87.2	79.4	85.2	82.0	85.6	95.1	84.8	83.6	752
	2021	79.8	81.9	24.9	78.4	87.1	81.6	80.1	87.5	88.2	25.6	82.9	75.1	
	2019	0.406	0.387	0.25	0.141	0.292	0.122	0.099	0.396	0.1	0.242	0.109	0.1	
锦	2020	0.102	0.121	0.108	0.114	0.129	0.132	0.110	0.125	0.107	0.101	0.105	0.115	180
	2021	0.253	0.562	0.336	0.314	0.258	0.320	0.253	0.339	0.306	0.320	0.351	0.341	
	2019	3.7	3.45	2.94	3.39	3.31	2.42	3.52	3.59	2.92	2.44	3.53	4.24	
锐	2020	0.4	0.7	0.7	0.6	0.4	0.7	0.5	0.5	0.4	0.2	0.8	0.3	/
	2021	1.0	0.8	1.2	1.2	1.2	0.9	0.9	1.2	1.0	1.0	1.2	0.7	
	2019	1.16	0.99	0.79	0.9	1.32	1.06	1.19	1.04	1.24	1.05	1.11	0.88	
皱	2020	0.66	1.01	0.46	0.47	0.75	0.71	1.02	0.93	0.46	1.06	0.67	0.54	29
	2021	1.14	1.21	1.11	1.30	1.17	1.27	1.13	1.32	1.17	1.31	1.40	1.28	
	2019	1.1	1.1	1.1	1	2	2.5	2.4	1.6	1.8	1.7	1.4	1.3	
钥	2020	未检出	/											
	2021	0.8	0.8	1.0	0.8	0.9	1.0	1.0	1.6	1.0	0.9	1.1	0.9	

从上表可看出,A1 类一重金属8 种均有检出,镉、铅、铜、镍、 汞、砷6 种重金属的检测数据均未超过《土壤环境质量建设用地土壤 污染风险管控指标》(试行)(GB36600-2018)第二类用地筛选值;铬、 锌 2 种重金属在《土壤环境质量建设用地土壤污染风险管控指标》(试 行)(GB36600-2018)中无标准限值,与 T1 参照点进行对比,监测点数据与T1 参照点数值波动幅度不大,监测点数据无异常。

A2 类一重金属与元素8 种均有检出,钻、钒、锑、铍4 种重金属的检测数据均未超过《土壤环境质量建设用地土壤污染风险管控指 标》(试行)(GB36600-2018)第二类用地筛选值;锰、硒、铊、钼4 种重金属在《土壤环境质量建设用地土壤污染风险管控指标》(试行)(GB36600-2018)中无标准限值,但与T1 参照点进行对比,监测点数据与T1 参照点数值波动幅度不大,监测点数据无异常。

D1 类一土壤pH 范围为8.31~8.88,《土壤环境质量建设用地土壤污染风险管控指标》(试行)(GB36600-2018)中无标准限值,但与 T1 参照点进行对比,监测点数据与T1 参照点数值波动幅度不大,监测点数据无异常。

考虑到采样位置偏移以及实验室间采用检测方法差异,除锑、铍 同比数据少量增加外,土壤中其他各比对监测因子含量与去年基本持平,未显著增加。

从 2018-2020 年土壤检测结果可看出,各金属类监测因子检测数据持平,未出现逐年增长。厂区各点位土壤样品中各项监测因子均满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)筛选值(第二类用地)要求,对人体健康的风险可以忽略。

表 2-4 2018-2020 年光宇皮业地下水自行监测结果对比

项目	时间	D1 背景监测点	D2 监测点	标准限值 (GB/T 14848-2017 III 类)
	2018	6.82	6.97	
	2019	7.61	7.49	
pН	2020	7.31	7.36	6.5~8.5
	2021	7.5	7.4	
	2018	未检出	未检出	
	2019	未检出	未检出	
铅	2020	未检出	未检出	≤0.01
	2021	未检出	未检出	
	2018	未检出	未检出	
	2019	未检出	未检出	
镉	2020	未检出	未检出	≤0.005
	2021	未检出	未检出	
	2018	未检出	未检出	
	2019	未检出	未检出	
铬	2020	未检出	未检出	/
	2021	未检出	未检出	
	2018	未检出	未检出	
	2019	未检出	未检出	
铜	2020	未检出	未检出	≤1.00
	2021	0.006	0.006	
	2019	0.007	0.032	
锌	2020	0.011	0.017	≤1.00
T+	2021	0.005	未检出	
	2018	未检出	未检出	
A-台	2019	未检出	未检出	
镍	2020	未检出	未检出	≤0.02
	2021	未检出	未检出	
	2018	未检出	未检出	
	2019	未检出	未检出	
汞	2020	未检出	0.00015	≤0.001
	2021	未检出	未检出	
	2019	0.0005	0.0005	
砷	2020	0.0008	0.0008	≤0.01
	2021	未检出	未检出	

	2019	0.0022	0.0009	
锰	2020	未检出	未检出	≤0.10
	2021	未检出	未检出	
	2019	未检出	未检出	
钴	2020	未检出	未检出	≤0.05
	2021	未检出	未检出	
	2019	未检出	未检出	
硒	2020	未检出	未检出	≤0.01
	2021	未检出	未检出	
	2019	未检出	未检出	
钒	2020	未检出	未检出	/
	2021	0.06	未检出	
	2019	未检出	未检出	
锑	2020	未检出	未检出	≤0.005
	2021	未检出	未检出	
	2019	未检出	未检出	
铊	2020	未检出	未检出	≤0.0001
	2021	未检出	未检出	
	2019	0.0014	0.0012	
铍	2020	未检出	未检出	≤0.002
	2021	未检出	未检出	
	2019	未检出	未检出	
钼	2020	未检出	未检出	≤0.07
	2021	未检出	未检出	

A1 类一重金属 8 种,铜元素检测数据均未超过《地下水质量标 准》 (GB/T14848-2017)III 类限值;镉、铅、铬、铜、镍、汞、锌 7 种重金属未检出。 A2 类一重金属与元素 8 种,均未检出。

D1 类 - pH 范围在 7.4~7.5 , 符合《地下水质量标准》 (GB/T14848-2017)III 类限值。

2022 年土壤及地下水采样点位如下

表 2-5 土壤监测点位坐标

编号	点位	东经	北纬
T01	厂区外西北农田(背景 点)	E112° 50′ 53.73″	N 34° 54′ 02.51″
T02	废水总排口西侧	E112° 50′ 54.00″	N 34° 54′ 02.19″
Т03	污水处理系统西侧	E112° 50′ 53.67″	N 34° 53′ 58.46″
T04	危废临时堆场	E112° 50′ 53.68″	N 34° 53′ 54.50″
T05	含铬废水处理系统北侧	E112° 50′ 55.43″	N 34° 53′ 54.43″
T06	污水处理系统东北侧	E112° 50′ 56.10″	N 34° 54′ 01.20″
T07	前处理车间(附二号车 间)东侧	E112° 51′ 02.67″	N 34° 53′ 56.73″
T08	前处理车间西侧	E112° 50′ 56.02″	N 34° 54′ 58.21″
T09	染色干洗车间西侧	E112° 50′ 56.58″	N 34° 54′ 56.48″
T10	化料仓库东侧	E112° 51′ 03.06″	N 34° 54′ 00.01″
T11	染色浸酸鞣制车间东侧	E112° 51′ 02.84″	N 34° 53′ 58.59″
T12	涂饰烫剪车间东侧	E112° 51′ 03.06″	N 34° 54′ 00.01″
T13	废水调蓄池西侧 (深层样)	E112° 50′ 53.44″	N 34° 53′ 55.18″
T14	厌氧罐东侧	E112° 50′ 56.06″	N 34° 54′ 29.21″
D01	项目上游水井	/	/
D02	厂区水井	/	/
D03	项目下游水井	/	/

表 2-6 土壤检测结果表

采样时间			2022. 08. 10	但以日本人		达标情	
采样点位	T01 厂区外西北农 田(背景点)	T2 废水总排口西侧	T3 污水处理系统 西侧	T4 危废临时堆场	T5 含铬废水处理系 统北侧	标准限值 (mg/kg)	是否 达标
рН	7. 58	7. 60	7.80	7.72	7.65	/	/
砷 (mg/kg)	10. 3	7. 57	7. 97	8.38	10. 3	60 [©]	达标
镉 (mg/kg)	0.11	0.14	0. 13	0.14	0.14	65	达标
六价铬 (mg/kg)	未检出	未检出	未检出	未检出	未检出	5. 7	达标
铜 (mg/kg)	23	27	26	29	38	18000	达标
铅 (mg/kg)	20	28	22	20	23	800	达标
汞 (mg/kg)	未检出	未检出	未检出	未检出	未检出	38	达标
镍 (mg/kg)	37	30	36	38	32	900	达标
四氯化碳 (μg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标
氯仿 (μg/kg)	3. 5	5. 5	7.3	5. 6	5. 3	900	达标
氯甲烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	37000	达标
1,1-二氯乙 烷(μg/kg)	未检出	1.5	未检出	未检出	未检出	9000	达标

1,2-二氯乙 烷(μg/kg)	未检出	未检出	未检出	未检出	未检出	5000	达标
1,1-二氯乙 烯(μg/kg)	未检出	未检出	未检出	未检出	未检出	66000	达标
顺-1, 2-二 氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	596000	达标
反-1,2-二 氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	54000	达标
二氯甲烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	616000	达标
1,2-二氯丙 烷(μg/kg)	未检出	未检出	未检出	未检出	未检出	5000	达标
1,1,1,2-四 氯乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	10000	达标
1,1,2,2-四 氯乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	6800	达标
四氯乙烯 (μg/kg)	5. 5	13. 9	17. 1	12. 5	未检出	53000	达标
1,1,1-三氯 乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	840000	达标
1,1,2-三氯 乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标

三氯乙烯							
二录(乙烯 (µg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标
1, 2, 3-三氯							
丙烷	未检出	未检出	未检出	未检出	未检出	500	达标
(μg/kg)							
氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	430	达标
苯(μg/kg)	未检出	未检出	3. 5	未检出	2. 6	4000	达标
氯苯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	270000	达标
1,2-二氯苯	-la I.A . I .		IA .I.	-t- 1.4 . I .	٠١٠ ٨٠ - ١٠	FC0000)
(μ g/kg)	未检出	未检出	未检出	未检出	未检出	560000	达标
1,4-二氯苯	 未检出	未检出	未检出	未检出	未检出	20000	达标
(μg/kg) 乙苯							
(μ g/kg)	2. 5	2. 6	未检出	未检出	未检出	28000	达标
苯乙烯	 未检出	1.9	2. 2	未检出	2.1	1290000	达标
(μ g/kg)	<u> </u>	1. 9	۷. ۷	小 型山	2. 1	1230000	之你 ————————————————————————————————————
甲苯	未检出	1.7	2.6	1.6	2. 1	1200000	
(μg/kg) 间-二甲苯+							
对-二甲苯	1.6	1.8	2. 0	 未检出	未检出	570000	 达标
$\mu g/kg$	1.0			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.5000	~ 1/1/
邻-二甲苯	未检出	未检出	未检出	未检出	未检出	640000	计标
(μg/kg)	不恒 出	不 短出	不 恒出	不 位出	不 位出	040000	达标
硝基苯	未检出	未检出	0. 16	未检出	未检出	76	达标
(mg/kg)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		~ 1/1/
苯胺 (mg/kg)	未检出	未检出	未检出	未检出	未检出	260	达标

2-氯苯酚 (mg/kg)	0. 17	未检出	0. 17	未检出	未检出	2256	达标		
苯并[a]蒽 (mg/kg)	0. 1	0. 1	0. 1	0. 1	0. 1	15	达标		
苯并[a]芘 (mg/kg)	未检出	未检出	0.3	未检出	未检出	1.5	达标		
苯并[b]荧 蒽(mg/kg)	未检出	未检出	0. 4	未检出	未检出	15	达标		
苯并[k]荧 蒽(mg/kg)	未检出	未检出	0. 2	未检出	未检出	151	达标		
菌 (mg/kg)	未检出	0. 1	0. 1	未检出	0. 1	1293	达标		
二苯并 [a,h]蒽 (mg/kg)	未检出	未检出	未检出	未检出	未检出	1.5	达标		
茚并 [1,2,3-cd] 芘 (mg/kg)	未检出	未检出	未检出	未检出	未检出	15	达标		
萘 (mg/kg)	0. 12	0. 11	0. 11	0. 12	0. 12	70	达标		
小结	对 T01-T05 号点位分析,检测结果均满足《土壤环境质量建设用地土壤污 染风险管控标准》(试行)(GB36600-2018)中 筛选值 第二类用地标准要求。								

续表 2-6 土壤检测结果表

采样时间			2022. 08. 10	但以知水化		达标情况	
采样点位	T06 污水处理系统 东北侧	T7 前处理车间(附 二号车间)东侧	T8 前处理车间西 侧	T9 染色干洗车间西 侧	T10 化料仓库东侧	标准限值 (mg/kg)	是否 达标
рН	7. 54	7. 63	7. 73	7. 60	7. 68	/	/
砷 (mg/kg)	8.74	10. 3	10.9	10. 3	10.5	60 ^①	达标
镉 (mg/kg)	0.12	0.13	0. 12	0. 13	0. 13	65	达标
六价铬 (mg/kg)	未检出	未检出	未检出	未检出	未检出	5. 7	达标
铜 (mg/kg)	29	37	30	37	30	18000	达标
铅 (mg/kg)	29	20	17	20	23	800	达标
汞 (mg/kg)	未检出	未检出	未检出	未检出	未检出	38	达标
镍 (mg/kg)	32	38	49	31	37	900	达标
四氯化碳 (μg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标
氯仿 (μg/kg)	4. 2	5. 7	4.8	16. 4	5. 6	900	达标
氯甲烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	37000	达标
1,1-二氯乙 烷(μg/kg)	未检出	未检出	未检出	未检出	未检出	9000	达标

1,2-二氯乙 烷(μg/kg)	未检出	未检出	未检出	未检出	未检出	5000	达标
1,1-二氯乙 烯(μg/kg)	未检出	未检出	未检出	未检出	未检出	66000	达标
顺-1,2-二 氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	596000	达标
反-1,2-二 氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	54000	达标
二氯甲烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	616000	达标
1,2-二氯丙 烷(μg/kg)	未检出	未检出	未检出	未检出	未检出	5000	达标
1,1,1,2-四 氯乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	10000	达标
1,1,2,2-四 氯乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	6800	达标
四氯乙烯 (μg/kg)	13. 2	14.8	10.8	20. 3	未检出	53000	达标
1,1,1-三氯 乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	840000	达标
1,1,2-三氯 乙烷 (μg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标

三氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	2800	达标
1,2,3-三氯 丙烷 (µg/kg)	未检出	未检出	未检出	未检出	未检出	500	达标
氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	430	达标
苯(μg/kg)	未检出	未检出	未检出	8. 6	未检出	4000	达标
氯苯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	270000	达标
1,2-二氯苯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	560000	达标
1,4-二氯苯 (μg/kg)	未检出	未检出	未检出	未检出	未检出	20000	达标
乙苯 (μg/kg)	未检出	未检出	2. 5	未检出	未检出	28000	达标
苯乙烯 (μg/kg)	2. 0	未检出	未检出	2. 7	未检出	1290000	达标
甲苯 (μg/kg)	1.6	2. 1	1.4	6. 6	2. 2	1200000	达标
间-二甲苯+ 对-二甲苯 (µg/kg)	2. 1	2. 0	1.5	未检出	2.0	570000	达标
邻-二甲苯 (μg/kg)	未检出	未检出	未检出	未检出	1. 2	640000	达标
硝基苯 (mg/kg)	未检出	未检出	未检出	未检出	未检出	76	达标
苯胺 (mg/kg)	未检出	未检出	未检出	未检出	未检出	260	达标

2-氯苯酚 (mg/kg)	未检出	未检出	未检出	未检出	未检出	2256	达标		
苯并[a]蒽 (mg/kg)	0.1	0. 1	0. 1	0. 1	1.6	15	达标		
苯并[a]芘 (mg/kg)	0.3	未检出	未检出	未检出	0.8	1.5	达标		
苯并[b]荧 蒽(mg/kg)	0. 4	0. 4	未检出	未检出	1.9	15	达标		
苯并[k]荧 蒽(mg/kg)	0.2	未检出	未检出	未检出	1.1	151	达标		
	0. 1	0. 1	未检出	未检出	1.8	1293	达标		
二苯并 [a,h]蒽 (mg/kg)	未检出	未检出	未检出	未检出	0.9	1.5	达标		
茚并 [1,2,3-cd] 芘 (mg/kg)	未检出	未检出	未检出	未检出	2. 1	15	达标		
萘 (mg/kg)	0.11	0.11	0. 11	0.11	0. 12	70	达标		
小结	对 T06-T10 号点位分析,检测结果均满足《土壤环境质量建设用地土壤污 染风险管控标准》(试行)(GB36600-2018)中 筛选值 第二类用地标准要求。								

续表 2-6 土壤检测结果表

		次 代20	<u> </u>			
采样时间		2022. 08. 10		2022. 08. 27	达标情	
采样点位	T11 染色浸酸鞣制车间 东侧	T12 涂饰烫剪车间东侧	T13 废水调蓄池西侧 (深层样)	T14 厌氧罐东侧	标准限值 (mg/kg)	是否 达标
рН	7. 46	7. 40	7.82	7. 64	/	/
砷 (mg/kg)	9. 00	8. 68	7. 99	10. 6	60^{\odot}	达标
镉 (mg/kg)	0. 14	0. 11	0. 14	未检出	65	达标
六价铬 (mg/kg)	未检出	未检出	未检出	未检出	5. 7	达标
铜 (mg/kg)	33	35	38	32	18000	达标
铅 (mg/kg)	20	19	18	24	800	达标
汞 (mg/kg)	未检出	未检出	未检出	未检出	38	达标
镍 (mg/kg)	34	31	33	30	900	达标
四氯化碳 (µg/kg)	未检出	未检出	未检出	未检出	2800	达标
氯仿 (μg/kg)	5. 8	4. 1	5. 0	2. 5	900	达标
氯甲烷 (μg/kg)	未检出	未检出	未检出	未检出	37000	达标
1,1-二氯乙 烷(μg/kg)	未检出	未检出	未检出	未检出	9000	达标

1,2-二氯乙	未检出	未检出	未检出	未检出	5000	达标
烷(μg/kg)						
1,1-二氯乙 烯(μg/kg)	未检出	未检出	4. 1	未检出	66000	达标
顺-1,2-二 氯乙烯	未检出	未检出	 未检出	未检出	596000	达标
$(\mu g/kg)$						
反-1, 2-二						
氯乙烯	未检出	未检出	未检出	未检出	54000	达标
(μ g/kg)	///亚山	为(4) 型 山)\\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	为 内亚山	01000	2.77
二氯甲烷	+ 10.11	+ 10.11	+ 10.11	40.4	616000	/T'T=
(μ g/kg)	未检出	未检出	未检出	49. 4	616000	达标
1,2-二氯丙	+ 10 11		+ 1V 111	+ 10 11	E000	>1.1 -
烷(μg/kg)	未检出	未检出	未检出	未检出	5000	达标
1, 1, 1, 2-四						
氯乙烷	未检出	未检出	未检出	未检出	10000	达标
(μ g/kg)	> • Ex 124	> ▼ □ □) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) V 22. 124		,014
1, 1, 2, 2-四						
氯乙烷	未检出	未检出	 未检出	未检出	6800	达标
	// 1型 山	水型山	/八型山	/八型 山	0000	
(μ g/kg)						
四氯乙烯	16. 7	9. 6	13.8	未检出	53000	达标
$(\mu g/kg)$	10. 1	J. 0	10.0	7/2/12/11		×2.44
1, 1, 1-三氯						
乙烷	未检出	未检出	未检出	未检出	840000	达标
(μ g/kg)						
1, 1, 2-三氯						
乙烷	未检出	未检出	未检出	未检出	2800	达标
$(\mu g/kg)$						

三氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	2800	达标
1,2,3-三氯 丙烷 (μg/kg)	未检出	未检出	未检出	未检出	500	达标
氯乙烯 (μg/kg)	未检出	未检出	未检出	未检出	430	达标
苯(μg/kg)	未检出	未检出	未检出	未检出	4000	达标
氯苯 (μg/kg)	未检出	未检出	未检出	未检出	270000	达标
1,2-二氯苯 (μg/kg)	未检出	未检出	未检出	未检出	560000	达标
1,4-二氯苯 (μg/kg)	未检出	未检出	未检出	未检出	20000	达标
乙苯 (μg/kg)	未检出	未检出	未检出	2. 4	28000	达标
苯乙烯 (μg/kg)	未检出	未检出	未检出	2. 0	1290000	达标
甲苯 (μg/kg)	2. 4	1.2	1.9	未检出	1200000	达标
间-二甲苯+ 对-二甲苯 (µg/kg)	1.6	未检出	未检出	1.5	570000	达标
邻-二甲苯 (μg/kg)	未检出	未检出	未检出	未检出	640000	达标
硝基苯 (mg/kg)	未检出	未检出	未检出	未检出	76	达标
苯胺 (mg/kg)	未检出	未检出	未检出	未检出	260	达标

2-氯苯酚 (mg/kg)	未检出	未检出	未检出	未检出	2256	达标		
苯并[a]蒽 (mg/kg)	0. 1	0. 1	0. 1	0. 1	15	达标		
苯并[a]芘 (mg/kg)	0. 3	未检出	0.3	未检出	1.5	达标		
苯并[b]荧 蒽(mg/kg)	0. 4	0. 4	0. 4	未检出	15	达标		
苯并[k]荧 蒽(mg/kg)	0. 2	0. 2	0. 2	未检出	151	达标		
菌 (mg/kg)	0. 1	0. 1	未检出	未检出	1293	达标		
二苯并 [a, h] 蒽 (mg/kg)	0.6	未检出	未检出	未检出	1. 5	达标		
茚并 [1,2,3-cd] 芘 (mg/kg)	0.6	未检出	0.6	未检出	15	达标		
萘 (mg/kg)	0. 11	0.11	0. 11	0. 12	70	达标		
小结	对 T11-T14 号点位分析,检测结果均满足《土壤环境质量建设用地土壤污 染风险管控标准》(试行)(GB36600-2018)中 筛选值 第二类用地标准要求。							

表 2-7 地下水监测结果

采样时间		2022. 08. 10			
采样点位	D01 项目上游 水井	D02 厂区水井	D3 项目下游 水井	标准限值	达标 情况
样品描述	无色、无杂 质、无异味	无色、无杂 质、无异味	无色、无杂 质、无异味		
рН	7. 1	7. 3	7. 2	6. 5-8. 5	达标
总硬度(以 CaCO ₃ 计) (mg/L)	316	327	306	450	达标
溶解性总固体 (mg/L)	517	506	524	1000	达标
硫酸盐 (mg/L)	68	69	65	250	达标
氯化物 (mg/L)	69	72	80	250	达标
铁 (μg/L)	1. 17	2. 11	1. 22	300	达标
锰 (μg/L)	0. 25	0. 26	0. 36	100	达标
铜 (μg/L)	1. 20	1. 12	1. 11	1000	达标
锌 (μg/L)	2. 08	1.96	1.85	1000	达标
挥发性酚类(以 苯酚计)(mg/L)	0. 0005	0. 0007	0. 0006	0.002	达标
阴离子表面活性 剂(mg/L)	未检出	未检出	未检出	0.3	达标
耗氧量(mg/L)	1. 57	1.80	1. 92	3. 0	达标
氨氮(以N计) (mg/L)	未检出	未检出	未检出	0.5	达标
硫化物 (mg/L)	0.006	0.005	0.007	0.02	达标
总大肠菌群 (MPN/L)	未检出	未检出	未检出	30	达标
菌落总数 (CFU/mL)	6	8	10	100	达标
亚硝酸盐(以 N 计)(mg/L)	未检出	未检出	未检出	1.0	达标
硝酸盐(以N计) (mg/L)	5. 73	4. 56	6. 35	20	达标
氰化物 (mg/L)	未检出	未检出	未检出	0.05	达标
氟化物 (mg/L)	0.46	0.44	0.42	1.0	达标

汞 (μg/L)	0. 69	0.46	0.61	1.0	达标
砷 (μg/L)	4. 7	3. 9	3. 0	10	达标
硒 (μg/L)	8. 6	5. 5	7.8	10	达标
镉 (μg/L)	0. 26	0. 25	0. 24	5. 0	达标
铬(六价)(mg/L)	未检出	未检出	未检出	0.05	达标
铅(μg/L)	0.38	0.36	0.36	10	达标
三氯甲烷 (μg/L)	3. 5	3. 1	3. 1	60	达标
四氯化碳 (μg/L)	未检出	未检出	未检出	2.0	达标
苯 (μg/L)	未检出	未检出	未检出	10	达标
甲苯 (μ g/L)	未检出	未检出	未检出	700	达标
色度 (度)	<5	<5	<5	15	达标
嗅和味	无	无	无	无	达标
浊度(NTU)	1. 2	1.3	1.9	3	达标
肉眼可见物	无	无	无	无	达标
铝 (μg/L)	18. 2	9. 08	10. 2	200	达标
钠 (mg/L)	22. 6	21. 9	24. 2	200	达标
总磷 (mg/L)	0.06	0.07	0.05	/	/
总铬 (mg/L)	4. 02	4.03	3. 95	/	/
乙苯 (μg/L)	1.0	0.8	1.0	300	达标
二甲苯 (μg/L)	未检出	未检出	未检出	500	达标
*碘化物 (mg/L)	< 0.025	<0.025	<0.025	0.08	达标

依据《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)及《地下水环境监测技术规范》(HJ 164-2020)附录 F 中所要求的监测因子,及《焦作市生态环境局关于公布 2022 年土壤污染重点监管单位名录的通知》,结合本项目生产情况及"三废"处理情况,本次土壤环境自行监测共布设 14 个采样点位,地下水布设 3

个采样点位。表层样品采样深度均为表层 0-0.5m 处土壤,深层样品采样深度为重点设施接地面往下 1m 范围内土壤。

经分析,该企业土壤中重金属、无机物、有机物等污染物均不超标,均满足《土壤环境质量建设用地土壤污染风险管控标准》(试行)(GB36600-2018)中筛选值第二类用地标准限值要求。本年度地下水监测点位3个,分别位于地下水流向上游、厂区内、地下水流向下游方向。

本年度色度、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发酚、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、六价铬、铅、三氯甲烷、四氯化碳、苯、甲苯、亚硝酸盐、总磷、总铬、总大肠菌群、菌落总数、乙苯、二甲苯因子的检测结果均满足《地下水质量标准》(GB/T 14848-2017)III 类标准限值要求。

三、地勘资料及地表水资源

3.1 地质信息

孟州市处于太行山南麓的丘陵向黄河冲积平原的过渡地区,属于黄河二级地貌台阶的接触部位,西北高、东南低,境内西部丘陵、东部平原、南部滩区,分界明显,面积大致各占 1/3 ,海拔最高点 305.9m(龙台西部陵顶) ,最低点 108.5m(东 部南庄),高差 197.4m ,在东部平原中部有一青峰岗地,西起上段,经上作、水运、谢庄、黄庄延伸至温县境内,为一东西走向的带状凸起,此乃黄河冲积扇顶部,为黄河古自然堤、岗地南侧为4~8m 的陵坎,北侧以缓坡与沁河冲积扇相连,总面积为21.5km 2,西高东低,坡度为 1/2000 。西部陵区地面坡度为5~15 度,东部平原为3 度。

集聚区处于孟州市西部丘陵、平原地区,由南向北有明显的河滩——平原一丘陵—低山的过渡特征。规划区域北侧为丘陵地带,地块高差较大,且等高线密集,有较为明显的沟壑起伏,大致坡度呈西北至东南走向,内部排水沟渠高差较低,且两岸高差较大。

1、地层

孟州市位于济源盆地内,济源盆地第四纪以来沉积幅度大,厚度200~300m 同时沉积较完整,由砂卵石及土类组成,呈多层结构,其成因类型有冲积、洪积和 湖积。地层由新至老分述如下:

(1) 全新统(Q₄)

全新统冲积层下段(Q_{4-1} al):由淡黄色亚粘土、亚砂土、粉细砂及薄层砂砾 组成。砂砾石结构疏松,分选、磨圆好,厚度 $15\sim35m$ 。粒径自西北向东南由粗变细,分布于一级阶地。

全新统冲积层上段(Q₄₂ ^{nl}): 为浅黄色粉细砂、亚砂土及砂卵石层,厚3~15m,分布于河漫滩、河床。

(2) 上更新统(O₃)

冲积层(Q3 al): 埋藏于全新统之下,在西北部为厚层的砂卵石及灰黄、棕黄色含砾亚砂土,亚粘土互层,东南部为亚粘土,亚砂土加砂砾石,粉细砂(薄层或透镜体),粒度由西北向东南变细,分选磨圆变好的规律,埋深 10~40m, 层厚 20~80m。

风成黄土(Q₃ BO1):主要覆盖于孟州西北的台塬地区,为灰黄色粉土质轻亚粘土或重亚砂土,含少量钙质结核,质地疏松,有良好的垂直大孔隙,中夹 1~3 层不太明

显的灰褐色古土壤层,厚度为 5~12m。与中更新统黄土呈不整合接触。

(3) 中更新统(O₂)

冲积层(Q₂ ^{al}):埋藏于全新统、上更新统之下,埋深为 50~90m,为棕红、棕黄色亚粘土、亚砂土夹中细砂及砂卵石层。厚为 20~90m,不整合于下更新统之上。

风成黄土(Q₂ Q₀₁):分布于孟州西北地区,为棕黄、灰黄色富含钙质结核的粉土 质亚粘土、并夹多层棕红色古土壤层,每层下部多有钙质结核层。其中黄土具有较好 的垂直节理和大孔隙,为粉土质亚粘土;古土壤层则粒度较细、粘性较强,为粉土质重亚粘土。厚约 2~60m。

(4) 下更新统(Q₁)

湖冲积层(Q₁ ^{1a1}):被全新统及中上更新统统覆盖,埋深在 100~140m,为深褐色、浅黄色、黄绿色砂质粘土、粘土、泥质粉砂、灰白色砂、卵石及粘土砾石层,局部夹有泥灰岩。

(5) 上第三系(N)

洛阳组(N): 为棕红色、浅黄色及杂色(棕红、灰绿、灰白色)砾石(卵石层)、砂质粘土砾石,多未胶结或半胶结,厚度可达 200~300m。

2、地质构造

据《河南省区域地质志》,评估区位于华北地层区(I)华北平原分区(I₃)豫东

小区(I₃²),详见图3-1,区域出露地层主要为第四系。

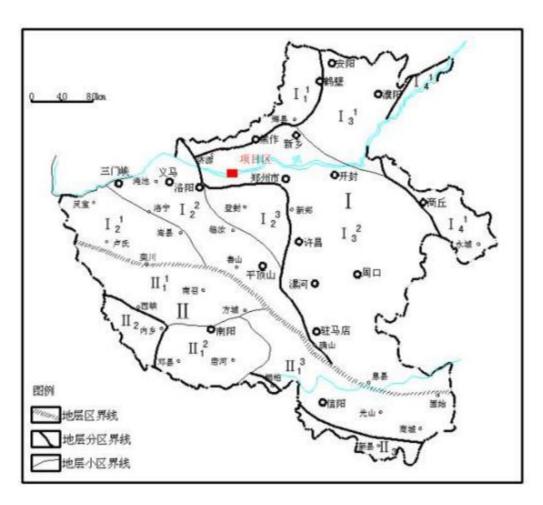


图3-1 河南省综合地层区划图(根据《河南省区域地质志》)

地质构造分区说明表

一级单元	二级单元	三級单元
I 中朝准地台	11-山西台隆	Ⅰ,¹-太行山拱断束、Ⅰ,²-铁山河拱褶断束
	I 2-华熊台绿坳陷	Ⅰ2-渑池-确山褶断束、Ⅰ2-崤山-鲁山拱褶断束、
		I g3-卢氏-栾川陷褶断束
	[3-嵩箕台隆	
	Ⅰ4-华北坳陷	Ⅰ4-汤阴断陷、Ⅰ42-内黄凸起、Ⅰ43-东明断陷、
		1.4-济源-开封凹陷、1.5-通许凸起、
		146-周口凹陷、147-西平-平舆凸起、
		14-驻马店-淮滨凸起
	[3-鲁西台隆	Ⅰ 5 - 荷泽凸起、Ⅰ 5 - 永城陷褶断束
Ⅱ-秦岭褶皱系	Ⅱ₁-北秦岭褶皱带	Ⅱ,1-横涧-回龙地背斜褶皱束、
		Ⅱ12-二郎坪-刘山岩地向斜褶皱束、
		Ⅱ 13-寨根-彭家寨地背斜褶皱束。
		Ⅱ_4-西峡-南湾地向斜褶皱束、
		Ⅱ,5-北淮阳地向斜褶皱束
	Ⅱ2-南秦岭褶皱带	Ⅱ2-陡岭地背斜褶皱束、Ⅱ2-荆紫关-师岗地向斜褶皱束
	Ⅱ。-桐柏-大别褶皱带	1 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Ⅱ4-南阳-栗樊坳陷	Ⅱ41-南阳断陷、Ⅱ42-新野凸起、Ⅱ43-枣阳-寨樊凹陷
	Ⅱ 5~美川坳陷	Ⅱ。1-蓝青店凸起、Ⅱ。2-平常关-罗山凹陷、
		Ⅱ _s ²-仙居凸起、Ⅱ _s ⁴-固始凹陷

据《河南省区域地质志》,河南省区域内共发育8条深断裂带,其中7条为岩石 圈断裂带,1条为壳断裂带。上述8条深断裂带,一般经历了长期的、多旋回发展演化 过程,不但规模大、切割深、活动时间长、性质多变的特点,而且对现代地震的发生具有控制作用。

孟州市在大地构造上处于济源盆地内,济源盆地为中生代坳陷-断落盆地,盆地内中生代沉积物厚约3000m,新生代沉积物厚约1000~6000m,盆地隐伏南北两个向斜构造,其中王曲—大木楼为北部的向斜构造,亦是该盆地的沉降中心,新生代沉积物厚 达6500m。盆地北缘的五龙口断裂、盘古寺断裂、南缘的黄河断裂及香房沟-小浪底断裂,西部的西承留-五指岭断裂为其断陷边界。

上述各种构造体系的生成、发育和复合为新构造运动奠定了基础。根据地形地貌、地质构造及沉积建造反映,早、中、晚更新世时期济源盆地一直处于沉降堆积中,但新构造运动总是有升有降,并具有一定的间歇性,以至于在盆地边缘形成了夷平面及多级阶地、洪积扇等地貌形态。

3、 评价区水文地质条件

根据野外钻探揭露,现场判别,结合原位测试和室内土工试验资料,将探勘深度 范围内的地层划分为3个单元层,现自上而下分层描述如下:

第①层 粉土 (Q₃ al+pl)

黄褐色,可塑,以粉土为主,夹腐植物、植物根须及炉灰渣等,土质松散。普遍 分布,厚度: 7.05-6.95m, 平均7.00m; 层底标高: 127.95-128.05m, 平均127.00m; 层 底埋深: 7.05-6.95m, 平均7.00m。

第②层: 粉质粘土 (O₂ al+pl)

黄褐色,可塑至硬塑,局部坚硬;含约 10%的姜石,粒径 1-2cm,含少量白色菌 丝状氧化钙,可见黑色斑点状碳化物。无摇振反应,光泽反应稍明显,韧性及干强度中等,无湿陷性。场区普遍分布,厚度:15.80-18.60m,平均 17.20m;层底标:108.40-111.20m,平均 110.80m;层底埋深:7.00-24.20m,平均 17.20m。

第③层 砂卵石 (Q₂ al+pl)

砂卵石: 杂色,饱和,密实,以石英、砂岩为主,卵石颗粒呈圆形、次圆形,一般粒径 1.0cm-10.0cm,个别粒径大于11cm以上,卵石占80%以上,由砂砾充填,胶结。

各层土的分布规律及变化情况详见各钻孔柱状图3-2。

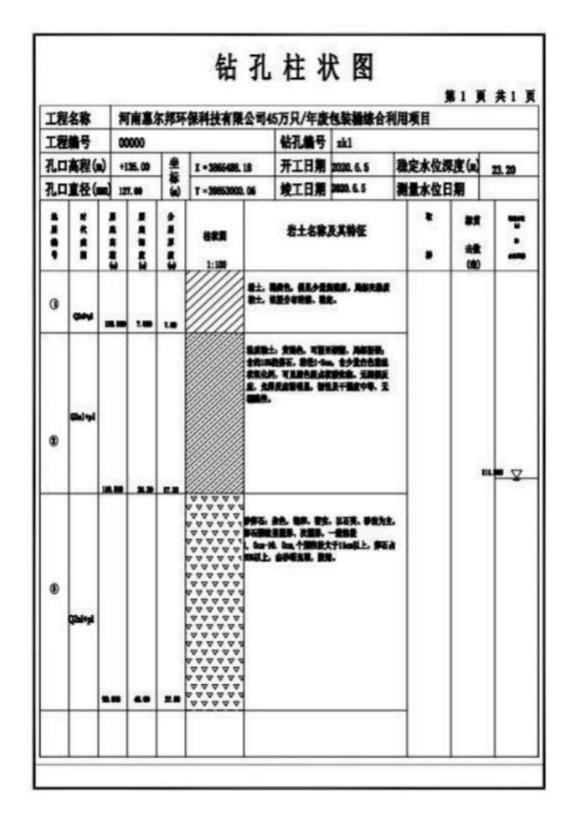


图3-2 场地成井柱状图

3.2 水文地质信息

3.2.1 地下水赋存条件

孟州位于济源盆地,济源盆地是地表水和地下水的汇集场所,松散堆积物为第四级及新第三纪冲积、湖积和洪积底层。一般为亚粘土、亚砂土、砂及卵石互层的多层结构,表层多为亚粘土或亚砂土层,总厚 200~500m。其中砂和卵石分选、磨圆较好,导水性能好,赋存着丰富的孔隙水。但由于沉积时代的先后不一,上下压密程度不同,因而从上到下孔隙率变小,富水性变弱。其中亚粘土、亚砂土虽然透水性能差,不利于地下水的运移和开采,但由于它们的孔隙率较小,而有利于地下水的储存,在一定条件下可补给砂卵石孔隙水,起着调储作用。表层亚粘土和亚砂土则是区域地下水直接接受大气降水渗入补给的媒介,它们的性质影响着区域地下水的富水程度。盆地内以细粒相为主的多层结构,正因为亚粘土、亚砂土的大量存在,才使其地下水的水力性质出现多样化,除了潜水外,在盆地中部承压水及自流水。

由于孟州市黄土厚度较小,下伏隔水层(下更新统—上第三系砂质粘土或中更新统黄土本身)性能较差,不利于地下水的储存;黄土冲沟切割较深,不利于地下水的补给;因而黄土地下水一般均较贫乏。

3.2.2 地下水类型及富水性

根据地下水赋存的岩类、赋存条件及水理性质,孟州市地下水主要为松散岩类孔隙水。

①多层结构砂、砂卵石孔隙潜水

在济源盆地内 50~100m 深度以上为全新统、上更新统及中更新统冲积、洪积层。西北部沉积粒度较粗,含水层以砂卵石为主,结构疏松,渗透系数一般为 15-30m/d,含水层有 3~8 层,厚 20~50m,地下水位埋深 2~5m。降深5m 单井涌水量为 1500~4000m³/d。

黄河阶地及漫滩地区,含水层埋深 5~35m, 主要为下更新—上第三系卵石、砂层, 其分选磨圆均较好, 但因固结较好, 局部胶结, 渗透系数一般仅有 10~30m/d, 降深 5m 单井涌水量为 1000~1500m³/d, 其中河漫滩地区大于5000m³/d。二级阶地水位埋深 10~35m, 漫滩及一级阶地水位埋深为 1~10m。

②砂卵石孔隙承压水

济源盆地中部济源、柏乡、沁阳、木楼一带,50~80m 之下有一层厚约 20~50m。

中更新统、下更新统(上部)亚砂土、亚粘土及粘土层,成为全新统、上更新统 含水层与中、下更新含水层之间的相对隔水层; 地下水在西北部上下连通区通过垂直入渗或水平径流得到补给,沿隔水层上下运动,形成独立的、与上部不同的水力性质, 水头高度较潜水位高出 2~10m。故下部以下更新统为主的含水层构成了一个相对独立的含水岩组,其顶板埋深 70~120m,在 200m 深度内有承压含水层 3~5 层,总厚度 30~50m,为河湖积卵石、中细砂层,其分选磨圆很好,渗透系数 5~20m/d,降 深15m 单井涌水量 1500~2500m³/d。同潜水含水岩组一样,承压含水岩组也是西北部 多卵石层而东南部多砂层,其富水性也由西北向东南降低,降深 15m 涌水量在东南部为 1500~2000m³/d,地下水较丰富。

③黄土孔隙孔洞裂隙水

孟州市西北黄土台塬、丘陵地区,广布上更新统—中更新统以风成为主的黄土,通过大气降水渗入的地下水主要储存于中更新统黄土及钙质结核层的孔隙、孔洞及裂隙中,以下更新统、上第三系的砂质粘土或中更新统黄土本身为相对隔水底板,地下水多为潜水,局部为上层滞水。由于第三系砂岩、泥岩隔水性能较好,黄土厚度较大,储存能力强,因而富水性较强,单井涌水量为 100-500m³/d,水位埋深 8-18m,向西随着地势增高,冲沟增多,黄土变薄,地下水位埋深加大,单井涌水量变小。

3.2.3 地下水补径排条件

(1) 潜水的补给、径流和排泄条件

①潜水的补给条件

孟州市潜水的主要补给来源有降水入渗补给、河道渗漏补给、渠系渗漏补给、渠 灌田间入渗补给、山前侧向补给和井灌回归补给。

人工开采: 孟州市内农业灌溉用水、工业用水、人畜生活用水多以开采浅层地下水为主,因此人工开采排泄是区内地下水的主要排泄方式。

潜水蒸发排泄:河漫滩区及一级阶地前缘,局部潜水位埋深多小于临界蒸发深度,同时包气带岩性多为亚砂土及砂砾石层,加上孟州市气候干燥,多年平均蒸发量为降水量的 2~3 倍。因此蒸发排泄是潜水的排泄方式之一。

下渗排泄: 黄土丘陵、台塬地区、黄土潜水位高于下部砂卵石层间水水位,存在黄土潜水对层间水的补给,也就是黄土潜水的下渗排泄。

侧向流出排泄: 孟州市浅层地下水的流向与地形坡降一致,由西北向东南方向径流,地下水会以潜流形式流出孟州市。

(2) 承压水及层间水的补给、径流及排泄条件

①承压水的补给、径流及排泄条件

以盆地中部为主的砂卵石孔隙承压水主要通过盆地边缘含水地层的上下连通区或 浅埋区得到上层下渗,降水入渗或基岩地下水的水平径流补给,然后向盆地东部径 流,随含水层粒度变细,水力坡度减小,径流条件变差,以至于地下水矿化度增大, 水质变差。其排泄方式除部分被人为开采外,部分则成水平径流流经孟州市。

②层间水的补给、径流及排泄条件

黄土丘陵、台塬地区下部的砂卵孔隙层间水,主要通过上部黄土孔隙孔洞裂隙潜水的下渗或得补给。在山前地带也可以得到少量基层地下水的水平径流补给。所得地下水向盆地及河谷阶地方向径流,由于水力坡度较大,一般径流条件较好。其排泄方式有三种,一是水平径流流入盆地河谷阶地相应的含水层,二是通过黄土丘陵、台塬中深切至层间水水位的河谷以下降泉的方式排泄,三是人工开采。

3.2.4 评价区地下水类型及含水岩组特征

评价区含水层位于第四系松散层下部的粉质粘土及砂卵石层中,为松散岩类孔隙水 含水层。由场地水文地质剖面图可知,评价范围内的地层主要由层①粉土(Q_3 al+pl)、层②粉质粘土(Q_2 al+pl)、层③卵石(Q_2 al+pl)和层④泥岩、粉砂岩(N)构成。其中,层① 粉土(Q_3 al+pl)和层②粉质粘土(Q_2 al+pl)为包气带,下部层④泥岩则为松散岩类孔隙水的隔水底板。

松散岩类孔隙水:含水岩组主要由第四系中更新统、上更新统、全新统之残积、 坡积、洪积而成的碎石层、砂层、砂砾石层和砾卵石层组成。地下水化学类型为HCO3-Ca•Mg型水。地下水的补给主要来源于大气降水补给,其次为地表水渗漏补给,地下水由西北向东南径流,排泄主要为径流排泄和人工开采排泄。

根据现场调查,评价区松散岩类孔隙水富水性一般。评价区水文地质图及水文地质剖面图见图3-3~3-6。

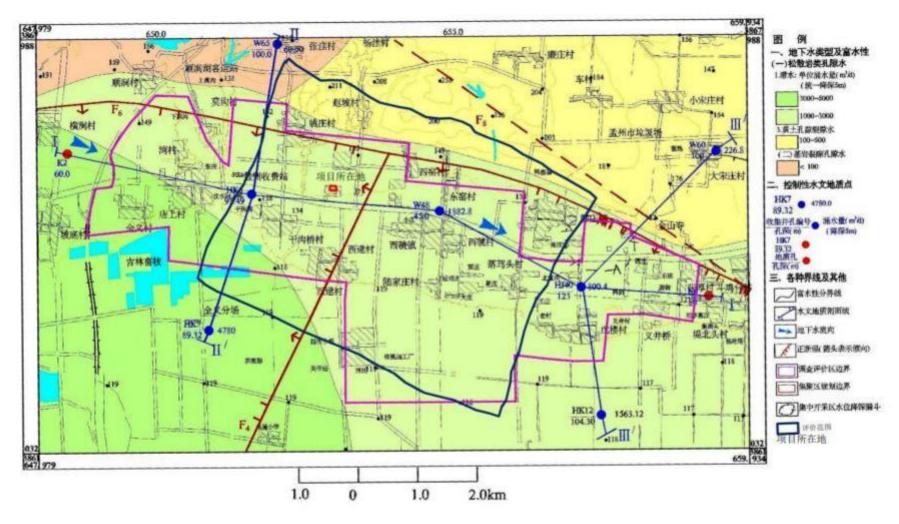


图 3-3 评价区地下水水文地质图

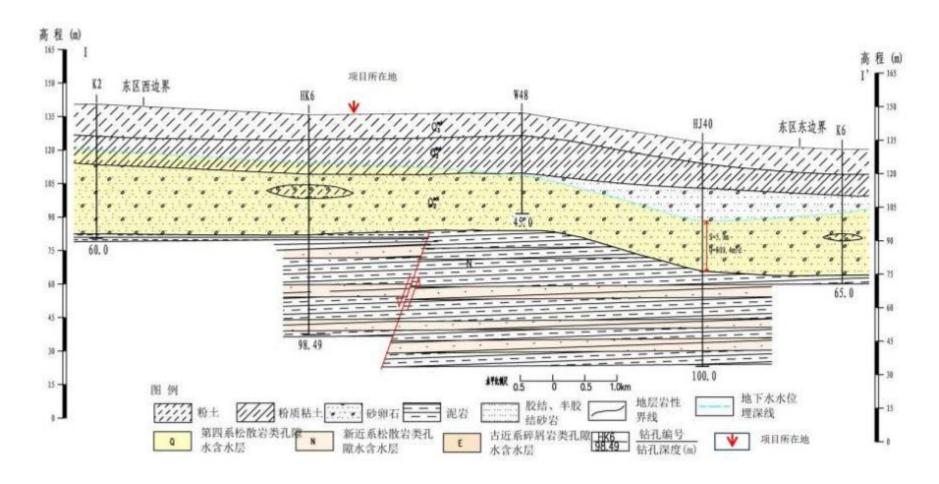


图3-4 评价区 I - I · 水文地质剖面图

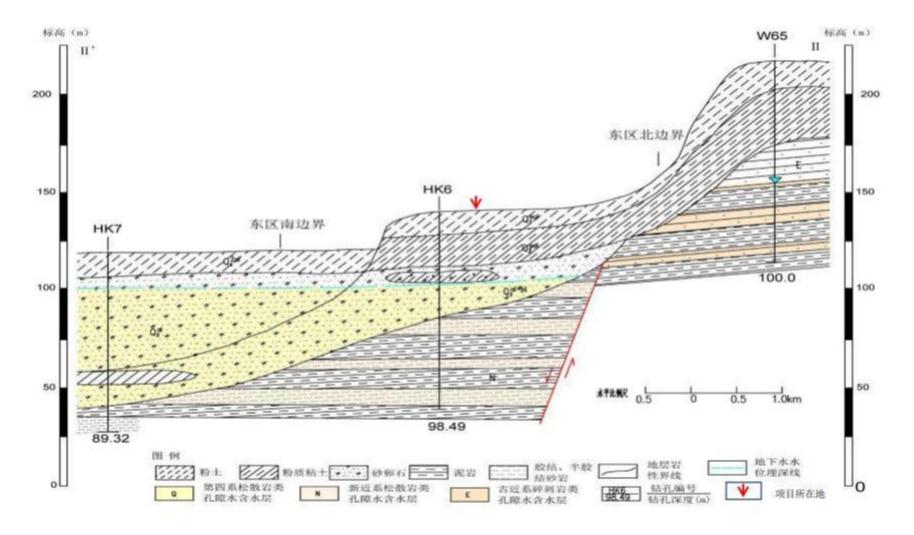


图3-5 评价区 II - II · 水文地质剖面图

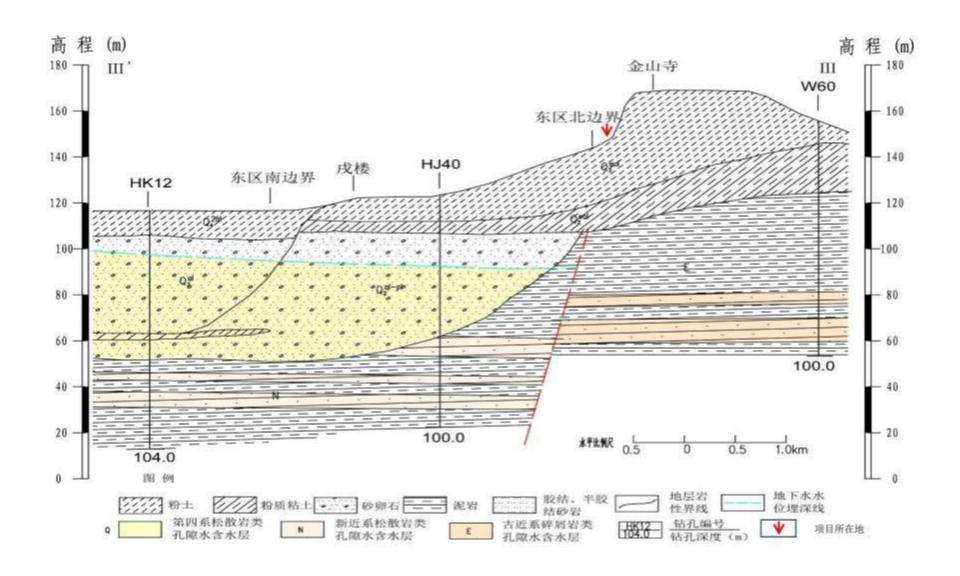


图3-6 评价区III-III,水文地质剖面图

3.3 地表水资源

孟州市属黄河流域的一部分,境内有黄河、蟒河、猪龙河等大小河流 11条。境内有引沁济蟒渠、一干渠、二干渠、排涝渠等人工渠,共长 226. 31km。

黄河由坡底入孟州市境,在贾营附近出境进入温县,境内河长 26km。蟒河发源于 山西省阳城县东山乡花野岭,流经济源市、沁阳市,由沁阳大位村进入孟州,在白墙 水库以下分为蟒河和蟒改河。蟒河在新河口闸北以下称为新蟒河。新蟒河经孟州、温 县,在温县汜水滩附近注入黄河,孟州境内河长 12km,目前新蟒河河道内主要是上游 来水和沿途工厂排放的废水。老蟒河水源主要来源于县城的工业废水和生活污水,在 孟州境内汇入蟒改河。蟒改河是一条人工开挖的泄洪排涝河,可排水量 200㎡/s,经谷 旦、城伯、南庄,至贾营处汇入新蟒河,境内河长 18.6km。猪龙河由沁阳崇义入孟州市境,流经城伯乡、南庄乡入温县,汇入新蟒河,境内河长 16km,属排涝河流。

孟州市现有开挖的三条人工排涝排污河道。一是一干渠排涝河,在城关乡堤北头村进入黄河滩涝河,全长 15km,主要是排放雨水和承纳沿途工业企业的废水;二是黄河滩涝河,发源于顺涧水库,由西向东沿黄河滩在石井桥汇入黄河,境内河长 36km,是一条排涝纳污河;三是县城排涝河,主要用于排放县城的雨水、生活污水及工业废水,在新河口闸附近汇入老蟒河,属排涝排污渠道。

项目废水经厂区污水处理设施处理达标后经专用管道排入孟州市产业集聚区污水管网,经孟州市第二污水处理厂处理后排入滩区涝河,最终进入黄河。评价区域地表水体情况见图3-7。

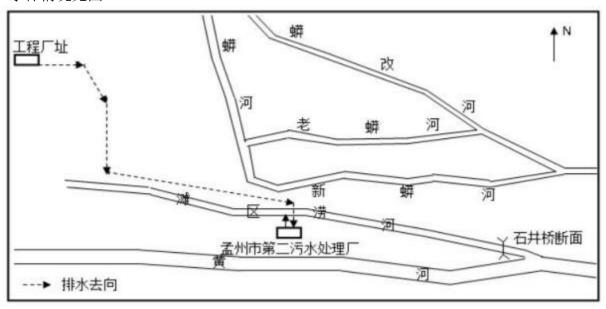


图 3-7 区域地表水系示意图

四、企业生产及污染防治情况

4.1 企业生产概况

主要产品方案及主要原辅材料物料技术指标及性质见表 4-1, 4-2。

表 4-1 产品方案一览表

产品名称	生产方案	备注
羊剪绒	500 万张/a	/

表 4-2 原辅材料物料性质一览表

项目	材料名称	用途	単耗(kg/张)	年耗量(t/a)	 备注
-74	澳大利亚皮	71122	7-7-1 (NS/ JK/	420 万张	田止
原料	英国皮	制羊剪绒产品	/	50 万张	海运+陆运
//\/\/\/	美国皮		/	30 万张	14.6.16.6
			0.04	200	国外购买
	脱脂剂	去除原料污垢,脂肪	0. 1	500	国外购买
	脱脂酶	去除纤维杂质	0. 02	100	国外购买
	甲酸	AMATALAMA	0. 14	700	国内购买
	 硫酸		0. 3	1500	国内购买
	—————————————————————————————————————	调节 pH	0.09	450	国内购买
	小苏打		0.045	225	国内购买
皮革		提高成革的 TS	0. 052	156	国外购买
助剂	合成鞣剂	提高成革的饱满度	0. 18	540	国外购买
	填充剂	提高成革的饱满度	0.08	400	国外购买
	蒙囿剂	提高成革均匀度	0. 01	50	国外购买
	盐	预防原料酸肿	0. 34	1700	国内购买
	铬鞣剂	提高成革的 TS	0. 025	75	国内购买
	植鞣剂	提高成革的 TS	0.05	150	国内购买
	漂白粉	漂白皮张	0.025	50	国内购买
	双氧水	漂白皮张	0.036	72	国内购买
	染色匀染剂		0. 02	100	国外购买
상표 자기 괴소	黄 H	染料	0.01	50	国内购买
染料类	红H	染料	0.0044	22	国内购买
	棕 H	染料及其它	0. 0216	108	国内购买
涂饰	颜料膏	涂饰用	0.009	9	国内购买
(100	助剂	涂饰用	0.045	45	国内购买
万张/a)	水性涂饰树脂	涂饰用	0.036	36t	国内购买
能源	水	/	231. 24	115.62万	/
消耗	汽	/	18	9万 t	/

4.2 生产工艺流程及工艺流程产污图

工程以绵羊皮为原料,经鞣前准备、鞣制、整饰三个工段制成羊剪绒成品。工程工艺如下:

(1) 绵羊皮生产工艺

工程以绵羊皮为原料,经鞣前准备、鞣制、整饰三个工段制成成品,生产规模为500万张/a,其中铬鞣300万张/a,植鞣200万张/a,

1) 鞣前准备工序

鞣前准备包括组织生产批、洗皮、湿剪、浸水、去肉、脱脂等工序。准备工段的主要目的是为鞣制创造条件,具体讲有以下几个方面:去掉皮上的无用之物如皮下组织、油脂、脏物(如血渍、尿渍、粪便等)、防腐物、有些皮的头尾腿蹄等;使经过防腐处理的原料皮水分含量及水分在皮内的分布情况、皮纤维的结构恢复到鲜皮状态;除去皮内的纤维间质,破坏弹性纤维和肌肉组织,松散胶原纤维;调节皮板纤维上的电荷情况,为鞣制创造条件。

这些目的要通过以下工序逐步完成:

转笼除盐:将盐湿皮投入转笼,通过快速旋转的方式将皮张上携带的的盐粒进行去除,除下的盐分经除杂后循环利用。

洗皮:洗皮在划槽内进行,目的是清除羊皮上附着的盐、防腐剂、泥沙、杂草等, 为后续加工做好准备。

湿剪:对于大毛羔皮,由于毛较长,需将其剪至规定长度,以便下一步工序的进行,剪去的羊毛可作为副产品出售。

浸水:浸水在划槽中进行,主要目的是使原料皮回鲜,要求皮板浸软浸透,接近鲜皮状态,并溶解皮中的可溶性蛋白质如白蛋白、球蛋白,初步松散纤维。

去肉:在去肉机上进行去肉,以除去皮下组织层和浮肉,使脂肪暴露出来,有利于乳化或皂化。同时去肉过程的机械拉伸作用可以把皮纤维拉活,使皮柔软。

脱脂:通过投加脱脂剂和表面活性剂,改变油脂与水之间的表面张力以产生乳化、 分散作用,使油脂转变为亲水的乳粒,分散于水中。脱脂目的为清洗皮板上和毛被上的 油脂,减轻油脂对化工材料向皮内渗透的阻碍作用。

2) 鞣制阶段

鞣制工段包括浸酸和鞣制工序。

浸酸: 主要投加甲酸、硫酸和盐,降低 pH 值。目的为松散毛皮的胶原纤维,使皮纤维松散,提高皮板的柔软性,为鞣剂渗透和结合创造条件。

鞣制就是要用能够与皮胶原蛋白结合并能够在肽链间产生交联缝合作用的物质与胶原反应,在胶原肽链之间形成新的更牢固的交联,使皮板结构的稳定性大幅度提高,使生皮转变成熟皮。鞣制效应概括如下:

皮板的耐水耐热性能提高,例如,生皮的收缩温度低于 68℃,铬鞣皮的收缩温度可以超过 100℃: 鞣制后的皮板耐微生物、耐化学试剂的作用提高,在湿热条件下不容易腐烂,在化学试剂作用下不容易被破坏;皮板的成型性提高;皮板的透气性和透水汽性等性能提高。工程通过超载转鼓等自动化高和保温性良好的设备,来提高浸酸液和鞣液的循环利用周期,在保证皮张质量的前提下,浸酸液和鞣液循环利用周期可以接近一个月。同时评价建议,企业应跟踪国际鞣液循环利用先进工艺,进一步提高浸酸液和鞣液的循环利用周期。

3) 整饰阶段

鞣制后的皮张已经具备了一些基本特性,而整饰是在这个基础之上,对皮张进一步进行修饰,赋予更多的感官特性,具体工序如下:

磨革: 用磨革机将皮板的里面磨平、磨光。

染前脱脂:针对一些含油脂多的毛皮,经过前道脱脂工序后仍未达到要求的,可在染色前再进行一次脱脂,以进一步去除皮板上以及毛被上的油脂。

干洗:对于含油脂多的羊皮,用干洗机再脱一遍油脂,在干洗机中通入蒸汽,通过转动滚筒将油脂洗出。

染色:染色工段主要根据产品的要求,对毛皮进行上色,使毛皮产品色彩丰富,呈现多样性,增加毛皮的表观性能。在转鼓和划槽中进行,一定时间内,羊皮可将水中染料大部分吸收,达到质量要求后清洗一遍,然后送离心机甩干水分。

烫剪毛: 烫毛机控制在一定温度下,通过机器上的梳毛板和刮刀(主要起分散毛的作用),将毛烫直,使毛被变得松散而灵活,光亮滑爽有弹性。然后用剪机将毛剪平,

所留毛的长短根据需要操作。

裁制:将羊皮裁剪、缝制成需要的形状和大小。

②铬鞣工艺和无铬鞣制工艺技术发展及应用情况鞣制是制革过程中最重要的一道工序,皮革鞣制工艺是指鞣剂能进到生皮组织中去,能与生皮纤维发生化学作用使皮变为革的化学物质,能改变皮的性质,使皮革具有柔软性、强度好、耐水、耐热、耐腐蚀、有化学稳定性的化学试剂。

皮革工业鞣制工艺主要分为三类:一类是无机盐鞣制工艺,典型的有铬鞣、钛鞣、铝鞣、硅酸盐鞣制工艺等;第二类是以醛鞣为基础的鞣制工艺,典型的有(改性)戊二醛、噁唑烷、四羟甲基膦(有机磷)鞣制工艺等;第三类是植物鞣制工艺。

铬鞣工艺:自1858 年 Knapp 研究发明铬鞣法,特别是在1893年 Dennis 发明了一浴铬鞣法以来,由于它操作简单、易于控制、成革耐湿热稳定性高等优点,很快在制革工业中得到广泛应用并占据主导地位。皮革经铬鞣工艺后具有耐水洗能力强、收缩温度高、成革丰满柔软、粒纹清晰、延伸性好、透水汽性好,起绒性和染色性俱佳等特点,在轻革生产中铬鞣工艺一直占主导地位。

植物鞣制工艺:常用的有荆树皮栲胶、橡椀栲胶、落叶松栲胶、坚木栲胶、杨梅栲胶等。植物鞣制能赋予皮革良好的成型性、填充性、耐磨性等综合性能,成为了重革生产过程中不可取代的主鞣工艺。缺点是所鞣革不耐水洗,柔软性差,收缩温度低,染色困难等。

尽管以上类型的鞣制工艺都有被研究和应用,但在皮革鞣制过程获得广泛应用的主要是铬鞣工艺和植物鞣制工艺。铬鞣工艺能赋予皮革良好的耐湿热稳定性,几乎是轻革生产中必不可少的主鞣工艺。尤其在现代制革业,轻革占的比例较高,重革占的比例较小,因此,在主鞣工艺中,铬鞣工艺所占的比例就更大。

铬鞣、植鞣产品除鞣制工段时所使用的鞣剂和工艺不同外,其余工段工艺均相同。根据相关调研,目前羊剪绒植物鞣制产品品种比较单一,主要为皮形、床毯、靠背等,成本高,市场容量有限。建设单位经过慎重考虑,决定本项目铬鞣产品规模为 300 万张/a、植鞣产品规模为 200 万张/a。

具体工艺生产流程见图 4-1。

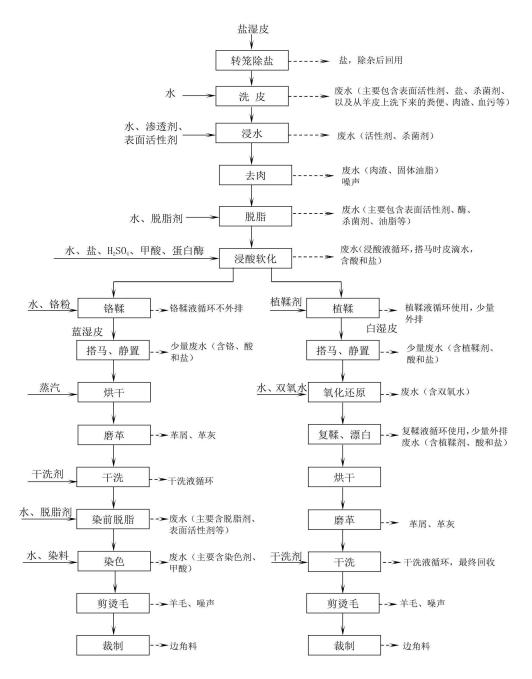


图 4-1 生产工艺流程图

4.3 产污环节分析及治理措施

4.3.1 废气的产生及治理措施

(1) 锅炉废气

工程建设 2 台 10t/h 天然气锅炉,天然气用量为 720 万 m³/a, 年运行时间 7200h。根据《环境保护实用数据手册》,天然气燃烧污染物产生系数为:烟尘 2.4kg/万 m3;根据《工业污染源产排污系数手册》(2010 修订),工业用天然气锅炉废气产生量为136259.17Nm3/万 m3,污染物产生系数为 S02 4kg/万 m3、N0X 18.71kg/万 m3,烟气经30m 烟囱排放。锅炉目前使用的只有一台 10t/h 天然气锅炉,另一台备用,氮氧化物安

装有在线监测设备,在线设备已经做完调试验收并与环保局联网,日常监测按照排污许可证自行监测要求频次检测,数据如下:

						颗粒	.物		二氧化	化硫		氮氧/	化物	
检测日 期	检测点位	l	则频 欠	烟气流量 (m³/h)	排放 (mg	浓度 /m³)	排放速率	排放 (mg	浓度 /m³)	排放 速率		浓度 /m³)	排放 速率	O ₂ (%)
					实	折	医学 (kg/h)	实	折	压争 (kg/h)	实	折	逐至 (kg/h)	
					测	算		测	算		测	算		
	天然气锅炉		第一次	3. 75×10 ³	3.0	2.6	0. 0112	3	3	0. 0112	18	16	0. 0675	1.1
2023. 7. 27	(10t/h)废 气排放口 (低氮燃烧+	周期	第二次	3. 94×10 ³	2.8	2. 5	0.0110	3	3	0. 0118	4	4	0. 0158	1.3
	烟气再循环)		第三次	4. 09×10 ³	3. 1	2.8	0. 0127	3	3	0. 0123	4	4	0. 0164	1.6

(2) 磨革废气

机械磨革过程中会产生革屑和革灰,根据统计,每张羊皮磨革过程中产生的革屑革灰约为 10g。本工程拟采用负压抽吸法,把产生的革屑和革灰随着空气一起吸入集气罩内,后送入布袋除尘处理后,由 15m 高排气筒达标排放。集气罩效率取 95%,袋式除尘器效率取 99%,风机风量为 3000m3/h。

(3) 涂饰废气

本项目约 20%的皮张需要进行涂饰。涂饰使用的涂饰剂为水溶性涂饰剂,其主要成分为聚氨酯树脂和丙烯酸树脂,不含二甲基甲酰胺(DMF,一种毒性较大的有机溶剂)、甲醛和有害重金属等。涂饰过程中产生的涂饰废气中主要为水蒸气,以及少量的颗粒物和NMHC。涂饰废气通过涂饰设备自带的水帘净化处理系统处理后经 15m 高排气筒排放。

(4) 恶臭气体

本工程恶臭气体主要来自羊皮洗皮、浸水等湿处理工段、废水处理站的调节曝气、污泥处理等工序,主要成分为NH3和H2S。夏季气味较大,冬季气味较小。

本工程建设 1 万 t/d 废水处理站, 拟将废水处理站的调节曝气池、污泥浓缩间等产臭气工段进行封闭, 产生的恶臭气体通过收集系统收集后, 进入生物除臭系统进行处理 达标后通过 15m 高排气筒排放。

4.3.2 废水的产生及治理措施

(1) 含铬废水

含铬废水主要包括铬鞣废液和铬鞣清洗废水,必须做到单独收集。废铬鞣液处理拟采用碱沉淀+膜过滤方法对铬鞣废液进行处理,规模为100t/d。

(2) 脱脂废水

主要来自脱脂工段,采用酸提取法回收混合脂肪酸。脱脂废水经过滤后送入酸化池中进行破乳,使油水分离、分层,将分离后的油脂层回收经加碱皂化后再经酸化水洗,最后回收得到混合脂肪酸。脱脂废水经酸提取法回收混合脂肪酸后,可使废水中总的有机物浓度降低 80%, COD 浓度降至 2000mg/L 以下。

脱脂废水处理设施处理规模为 1000t/d, 处理流程为: 脱脂废水→收集池→加酸反应池→新建综合废水处理站。

(3) 染色废水

染色废水采用混凝法进行预处理,对色度的去除效率可以达到90%以上。染色废水预处理规模为500m3/d。

(4) 综合废水处理

按照郑州大学综合设计研究院编制的本项目污水处理站设计方案,本项目拟采用的综合废水处理工艺为"调节曝气+气浮沉淀+IC 厌氧反应器+多点进水 0/A/0 工艺+二沉",处理规模为 10000m³/d。

4.3.3 固体废弃物产生及治理措施

工程产生的固体废物分为一般固废和危险固废。一般固废有碎肉、油脂、羊毛、污水 处理站污泥和生活垃圾等; 危险固废有革屑革灰、边角料、铬泥、浓缩蒸发晶体等。

(1) 碎肉、油脂

工程运营期间,碎肉、油脂产生量为 2500t/a,可外售生产洗涤剂、工业胶和肥皂等,达到废物综合利用的同时可创造一定的经济价值。

(2) 羊毛

本工程羊毛产生量为 1000t/a, 羊毛是纺织工业的重要原料, 价格较高, 可作为副产品外售创造经济价值。

(3) 污泥

本工程污水处理站污泥产生量为 3916t/a(含水率 60%),属一般固废。污水处理站产生的污泥含水率在 90%以上,在经过浓缩、投加混凝剂的基础上,通过板框压滤机进行脱水,可保证污泥含水低于 60%,脱水后的污泥,近期送往有资质的单位处置。

(4) 铬泥、浓缩蒸发晶体、革屑革灰

铬泥、浓缩蒸发晶体、皮革废料、废活性炭、废机油、废包装物、运维废液、废 UV 灯管和革屑革灰定期送大公环境资源(开封)有限公司安全处置。

(5) 边角料

本工程边角料产生量为 1000t/a, 边角料可外售下游皮革厂做劳保手套、小挂件等, 既防止二次污染, 又产生经济效益与社会效益。

(6) 生活垃圾

技改工程劳动定员 648 人,按每人每天产生生活垃圾 0.5kg 计算,则每年生活垃圾产生量为 97.2t,由环卫部门收走后送填埋场处置。

4.3.4 噪声

项目主要噪声源为去肉机、转鼓、风机等,噪声设备采取减震、隔声等措施来降低 噪声。

4.4 企业生产设施设备布设情况

项目主要建设内容、设备布设及占地面积见表 4-4,治理设施一览表见表 4-5。

表 4-4 功能区分布及设施设备布设一览表

序号	区域/产污单元	占地面积(m²)	功能/其他
1	原皮仓库	3744	储存生皮
2	前处理车间(附二号车间)	2100	洗皮
3	前处理车间 (三号车间)	4452	脱脂
4	染色浸酸鞣制车间	4400	鞣制
5	染色干洗车间	2152	染色
6	化料区	900	/
7	烫皮车间	1872	烫皮、剪皮
8	烘干车间	2800	烘干羊皮
9	量皮车间	500	对羊皮进行尺量切边
10	半成品库、成品库	3744	储存半成品羊皮、成品羊皮
11	污水深度处理	2500	
12	二沉池	3000	· 处理生产废水
13	好氧反应区	6200	

14	浓缩池	600	
15	调蓄池	1000	
16	危废暂存间	100	临时储存危险废物

表 4-5 治理设施一览表

类别	产污环节	主要污染因子	治理措施	排放口编号
	恶臭处理系统废气排 气筒	臭气浓度, 硫化 氢, 氨(氨气)	生物除臭	DA001
	锅炉排放口	林格曼黑度, 颗粒物, 氮氧化物, 二氧化硫	低氮燃烧器	DA002
	1#涂饰废气处理设施 排放口	非甲烷总烃, 苯, 二甲苯, 甲苯	干式除尘+W 光解+低温等离子+活性 炭	DA003
	2#涂饰废气处理设施 排放口	甲苯,二甲苯,苯,非甲烷总烃	干式除尘+UV 光解+低温等离子+活性 炭	DA004
	3#涂饰废气处理设施 排放口	非甲烷总烃,二甲苯,甲苯,苯	干式除尘+UV 光解+低温等离子+活性 炭	DA005
废气	1#磨革废气处理设施 排放口	颗粒物	袋式除尘器	DA006
	2#磨革废气处理设施 排放口	颗粒物	袋式除尘器	DA007
	5#剪毛废气处理设施 颗粒物		袋式除尘器	DA008
	6#剪毛废气处理设施 排放口	颗粒物	袋式除尘器	DA009
	1#烫毛废气处理设施 排放口	颗粒物	袋式除尘器	DA010
	2#烫毛废气处理设施 排放口	颗粒物	袋式除尘器	DA011

	3#烫毛废气处理措施 排放口	颗粒物	袋式除尘器	DA012
	4#烫毛废气处理措施 排放口	颗粒物	袋式除尘器	DA013
废水	生产废水、生活污水	pH、色度、悬浮物、 B0D5、总磷、硫化 物、动植物油、氯 化物、铬、流量、 六价铬		老蟒 河

五、重点监测单元识别与分类

重点区域识别工作主要有资料搜集、现场踏勘、人员访谈、重点区域及设施识别。为确定 是否存在土壤污染,主要收集重点监管单位基本信息、生产信息、环境管理信息、生产活动过 程涉及的物质、设施设备和运行管理等信息,并梳理有毒有害物质信息清单,通过充分的研究, 确定污染物进入土壤的可能性以及分散方式,可能产生疑似污染的区域等。

5.1 重点单元情况

根据各设施信息、污染物迁移途径等,识别企业内部存在土壤或地下水污染隐患的重点设施。存在土壤或地下水污染隐患的重点设施一般包括但不仅限于:

- a) 涉及有毒有害物质的生产区或生产设施;
- b) 涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区;
- c) 涉及有毒有害物质的原辅材料、产品、固体废物等的转运、传送或装卸区;
- d) 贮存或运输有毒有害物质的各类罐槽或管线:
- e)三废(废气、废水、固体废物)处理处置或排放区。

经排查认为确实具有土壤污染隐患的重点场所或重点设施设备,应识别为重点监测单元开展土壤和地下水监测工作,并根据其土壤和地下水污染风险水平划分其风险级别,重点监测单元风险级别的划分依据参见表 5-1。

单元类别	划分依据
一类单元	内部存在隐蔽性重点设施设备的重点监测单元
二类单元	除一类单元外其他重点监测单元

表5-1 重点监测单元风险级别划分表

注:隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地下、半地下或接地的储罐、池体、管道等。

根据相关资料和现场踏勘确定本企业的设施设备信息涉及污染物及潜在迁移途径等,重点监测单元信息见表5-2,厂区重点区域划分见图5-1。

表5-2 重点监测单元信息

区域	生产功能区	布设生产设备	涉及有毒有害物质原 辅材料、产品	涉及有毒有 害物质的固 废	涉及有毒有害物 质清单	可能的迁移	土壤污染可能性	单元类 别
原皮仓库库	储存生皮	储存大棚	生羊皮	/	铬	沉降	易产生污染	二类单 元
湿加工车间	洗皮、脱脂、鞣 制、染色	去肉机、剪毛机	脱脂剂	肌肉、皮下组 织	含铬废水	沉降、淋滤	易产生污染	二类单 元
烫皮车间	烫皮、剪皮	烫皮机	加脂剂	污泥	含铬污泥	沉降、淋滤	易产生污染	二类单元
烘干车间	烘干羊皮	离心甩水机、烘干 机	/	/	/	沉降	易产生污染	二类单 元
量皮车间	量革切边	电子量革机	/	羊皮边角料	/	沉降	可能产生污染	二类单 元
水处理区域	水处理	水处理设施、化粪 池	/	污泥	化学污泥、生化 污泥	淋滤、泄露	易产生污染	一类单 元
危废区	危废贮存	/	/	污泥	化学污泥	淋滤、泄露	易产生污染	二类单 元
办公区	办公	/	/	/	/	/	可忽略	二类单 元

注:本次为后续监测,仅对深层土的表层样进行检测。

52

21

图 5-1 厂区重点区域划分图

5.2 识别/分类结果及原因

基于第一阶段场地环境调查(资料搜集、现场踏勘和人员访谈)获取的资料,暂未发现周边企业出现过化学品泄漏事件和其它的环境污染事故,初步认为对本地块土壤和地下水产生影响的可能性较小,因此只对本地块可能存在的污染情况进行分析。存在土壤或地下水污染隐患的重点设施一般包括但不仅限于:①涉及有毒有害物质的生产区或生产设施;②涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区;③涉及有毒有害物质的原辅材料、产品、固体废物等的转运、传送或装卸区;④贮存或运输有毒有害物质的各类管槽或管线;⑤三废(废气、废水、固体废物)处理处置或排放区。本项目土壤重点设施及识别原因详见下表5-1。

不可以上級至為 以 為於於為					
设施	识别原因				
生皮仓库、生产车间	涉及有毒有害物质的生产区或生产设施;涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区				
污水处理站	贮存或运输有毒有害物质的管槽和水池				
危废暂存间	涉及有毒有害物质的固体废物等的贮存或堆放区域				

表 5-1 土壤重点设施及识别原因

5.3 关注污染物

根据孟州市光宇皮业有限公司使用的原辅材料清单,并结合企业的生产工艺、生产过程中产生的废气、废水和固废,对项目中可能产生的污染因子进行识别分析,由于公司主要进行裘皮加工,故本项目可能产生的污染因子有重金属等。通过污染因子的分析确定本地块潜在污染源主要为生皮仓库、生产车间、危废暂存间、污水处理站等。土壤监测关注污染物详见下表5-2。

表 5-2 土壤关注污染物及其关注区域

综上,本企业涉及涉及到的特征污染因子为: pH 值、铬(六 价)、铜、铅、氯化物、锌、总铬、镍、石油烃。

可将重点监测单元分布较为密集的区域划分为重点区域,根据《工业企业 土壤和地下水自行监测技术指南》(试行)的要求统筹规划监测点位和监测指 标,原则上每个重点区域面

积不宜大于 6400m2 。

根据本次收集和查阅历史资料、现场踏勘,结合企业原辅料使用情况及产排产污环节,经专业分析可知本企业所涉及的特征污染物有:pH 值、铬(六 价)、铜、铅、氯化物、锌、总铬、镍、石油烃。企业本年度土壤自行监测为新导则发布后的第二年检测,根据《工业企业土壤和地下水自行监测技术 指南(试行)》(HJ1209-2021)要求本企业本次土壤及地下水自行监测属于 后续监测。土壤深层样去年已采集分析,故本次监测土壤各点位只进行表层样采集分析,本次自行检测土壤监测因子为:《土壤环境质量建设用地土壤污染 风险管控标准(试行)》(GB 36600-2018)表 1 中的 45 项及土壤 pH 值、氰 化物、锌、总铬、总磷、石油烃。地下水监测因子为:《地下水质量标准(GB/T 14848-2017)表 1 中常规指标(微生物指标、放射性指标除外)35 项 和《地下水环境监测技术规范》(HJ 164-2020)附录 F 中对应行业的特征项目。

六、监测点位布设方案

6.1 重点单元及相应监测点/监测井的布设位置

基于第一阶段场地环境调查(资料搜集、现场踏勘和现场访谈)结果,按照《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)及《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)等要求进行布点,本次自行监测总共布设了14个土壤监测点位(包含1个土壤对照点)、3个地下水监测点位。土壤监测点位布置详见图6-1。

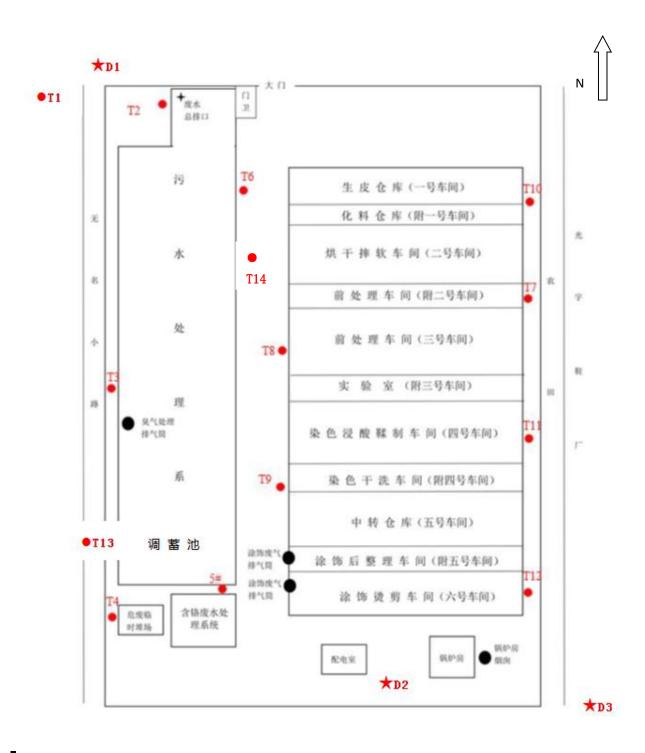


图 6-1 土壤及地下水监测点位示意图

6.2 各点位布设原因

土壤:基于第一阶段场地环境调查(资料搜集、现场踏勘和现场访谈)结果,并根据《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)要求,土壤一般监测应以监测区域内表层土壤(0-0.5m)为重点采样层,开展采样工作,本次调查共布设 14个土壤自行监测点位(包含1个土壤背景点)。

本次调查考虑到地块内土壤存在的潜在污染方式主要由地面以上污染源由地面自上而下进行渗透迁移导致表层土壤受到污染。故本次监测以重点设施或重点区域内表层土壤为重点采样层,开展采样工作。

地下水:基于第一阶段场地环境调查(资料搜集、现场踏勘和现场访谈)结果,并根据《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)要求,监测点位应布设在重点设施周边并尽量接近重点设施。可根据重点区域内部重点设施的分布情况,统筹规划重点区域内部监测点位的布设,布设位置应尽量接近重点区域内污染隐患较大的重点设施。企业或邻近区域内现有的地下水监测井,如果符合本指南要求,可以作为地下水对照点或污染物监测井。

根据调查,项目厂区地下水属第四系松散孔隙潜水类型,地下水补给来源主要为大气降水及侧向径流补给,厂区外西北角有1地下水井,位于地下水流向的上游,作为地下水参照井,厂区内东南角以及厂区外东南处分别有1地下水井,位于地下水流向的下游,可作为本次地下水监测井。

6.3 各点位监测因子及选取原因

本年度该企业土壤监测点位共计 14 个点位(含一个背景点)。土壤监测因子及选取原因见表 6-1,地下水监测因子及选取原因见表 6-2。

	农 0-1 工						
编号	监测点位	监测因子	选取原因				
T01	厂区外西北农田(背 景点)		// 一一一				
T02	废水总排口西侧	砷、镉、铜、六价铬、铅、汞、镍、四氯化碳、 氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、					
Т03	污水处理系统西侧	1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯	-				
T04	危废临时堆场	乙烯、二氯甲烷、1,1-二氯丙烷、1,1,1,2-四氯	根据该企业的原辅材				

表 6-1 十壤监测因子及选取原因

T05	含铬废水处理系统	乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-	料、生产活动及指南要
	北侧	三氯乙烷、1, 1, 2-三氯乙烷、三氯乙烯、1, 2, 3-	求, 土壤的监测因子主
T06	污水处理系统东北 侧	三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-	要为《土壤环境质量
mo. 5	前处理车间(附二号	二氯苯、乙苯、苯乙烯、甲苯、间-二甲苯+对-	建设用地土壤污染风
T07	车间)东侧	 二甲苯、邻-二甲苯、硝基苯、苯胺、2-氯苯酚、	 险管控标准(试行)》
T08	前处理车间西侧	 	GB36600-2018 表 1 中
T09	染色干洗车间西侧	荧蒽、䓛、二苯并[ah]蒽、茚并[1, 2, 3-cd]芘、	45 项因子、pH
T10	化料仓库东侧	萘、pH	
T11	染色浸酸鞣制车间 东侧		
T12	涂饰烫剪车间东侧		
T13	废水调蓄池西侧 (深层样)		
T14	厌氧罐东侧		

表 6-2 地下水监测因子及选取原因

编号	监测点位	监测因子	选取原因
D01	项目上游水井	色度、嗅和味、浑浊度、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发酚、阴离子表面活性剂、	(HJ1209-2021) ,根据该企
D02	厂区水井	耗氧量、氨氮、硫化物、钠、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、六价铬、铅、三氯甲烷、四氯化碳、苯、甲苯、亚硝酸盐、总磷、总铬、总大肠菌	南要求,地下水的监测因子主 要为《地下水质量标准》(GB/T 14848-2017)表1及《地下水
D03	项目下游水井	群、菌落总数、乙苯、二甲苯	164-2020)附录 F 中相关监测 因子

七、样品采集、保存、流转与制备

7.1 采样方法及程序

7.1.1 土壤样品采集

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25. 2-2019)中"7样品采集"的相关规范要求,本次调查土壤采样为人工取样。

土壤样品取出后,再使用土壤转移器转入专用样品瓶和检测器皿中。采样的同时进行现场记录,包含了样品名称和编号、气象条件、采样时间、采样位置、采样深度、样品质地、样品颜色和气味、相关采样人员等。

采用 GPS 按各采样点坐标进行现场放线定点。钻探结束后回填钻孔,并插上醒目标志物,以示该点样品采集工作完毕。

在人工取样的过程中先将取土区域地表清理干净,然后用铁锹开挖一个口 径适中、深度 约 50cm 的取样坑,取样时用不锈钢取样铁锹和刮刀将侧壁表土剥离,土壤样品采集的标准操 作程序如下所述:

(1) VOCs 土壤样品采集

土壤样品,先采集用于检测 VOCs 的土壤样品,具体流程和要求如下:用刮刀剔除约 1-2cm 表层土壤,在新的土壤切面处快速采集样品。针对检测 VOCs 的土壤样品,应用非扰动采样器 采集不少于 5g 原状土壤样品推入加有 10mL 甲醇(色谱级或农残级)保护剂的 40mL 顶空瓶内,推入时将样品瓶略微倾斜,防止将保护剂溅出。

(2) SVOCs 土壤样品采集

用于检测 SVOCs 指标的土壤样品,用采样铲将土壤转移至 250mL 棕色广 口样品瓶内并装满填实。采集过程中应剔除石块等杂质,保持采样瓶口螺纹处清洁以防止密封不严。

(3) 重金属土壤样品采集

用于检测重金属的样品,用采样铲采集土壤样品,采集的过程中应用竹片 或竹刀刮去土壤样品与采样铲接触的部分土壤,将剩余的土壤样品转移至聚乙 烯袋中。同时采集过程中应剔除石块等杂质,保持聚乙烯袋封口处清洁以防止密封不严。

(4) 平行样品采集

土壤平行样品应不少于地块样品总数的 10%。平行样应在土样同一位置采集,两者检测项目和检测方法应一致,在采集记录单中标注平行样编号及对应的土壤样品编号。

(5) 对照点样品采集

对照点采用人工取样,在人工取样的过程中先将取土区域地表清理干净,然后用铁锹开挖一个口径适中、深度约 50cm 的取样坑,取样时用不锈钢取样铁锹和刮刀将侧壁表土剥离并按照上述方法采集不同类型的土壤样品。

(6) 土壤样品采集拍照记录

土壤装入样品收集瓶中,记录样品编号、采集日期和采样人员等信息。为 了防止样品编码信息丢失,应同时在采样瓶和采样袋原有标签上手写样品编码 和采样日期,要求字迹清晰可辨。土壤样品采集过程中应针对采样工具、采集位置、VOCs 和 SVOCs 采样瓶和袋装样过程、样品瓶编号等关键信息拍照记录。

(7) 其他要求

土壤采样过程中应做好人员安全和健康防护,严禁用手直接采集土样,使用后的废弃的个人防护用品应统一收集处置。采集前后应对采集器进行清污和清洗,不同土壤样品采集应更换手套、避免交叉污染。

7.2.2 地下水样品采集

- (1) 地下水采样在采样前的洗井完成后两小时内完成。
- (2) 使用贝勒管采集地下水样品,一井一管、一井一根尼龙绳。
- (3) 取水位置为井中储水的中部,取样时测定水样 pH 值、电导率、浊度等参数。
- (4) 采集地下水样品过程中需配戴手套,不允许用手触碰取样瓶瓶口,避免设备或外部 因素污染样品。
- (5)将取得的水样分别装入用于检测不同指标的容器中。测定挥发性有机物的水样用 40 mL 螺纹顶空瓶取样,加 HC1 至 pH<2 使其稳定,取样瓶中不允许存在顶空或气泡。测定半挥发性有机物的水样也必须注满容器,上部不 留空隙。测定重金属的样品用 500mL 塑料瓶收集。所有样品盖紧后密封,放入 4℃以下保温箱中保存,直至到达分析实验室。

- (6) 在容器上标注好样品编号和取样时间。地下水采样时及时进行现场 记录,记录内容包括: 样品名称和编号、采样位置、采样深度、样品的颜色和气味、现场检测结果以及采样人员等。
 - (7) 地下水现场采样质控样一般包括现场平行样、现场空白样、运输空白样等。

7.2 样品保存、流转与制备

土壤、地下水的样品保存、运输和流转按照《建设用地土壤污染风险管控 和修复监测技术导则》(HJ 25.2-2019)、《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ164-2020)、《地块土壤和地 下水中挥发性有机物采样技术导则》(HJ 1019-2019)及《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(环办土壤函[2017]1896号,环境保护部办公厅 2017年 12月7日印发)等标准规范的要求执行。具体情况见表7-1和表7-2。

表 7-1 土壤样品保存方法一览表

		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
序号	监测项目	采样容器和体积	保存方法	保存时间
1	砷	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
2	镉	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
3	铬(六价)	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	1d
4	铜	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
5	铅	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
6	汞	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	28d
7	镍	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
8	pH 值	G, 250ml	采用封闭性装样分装,土壤尽量与瓶口 形 状匹配,填满瓶子并密封	180d
9	挥发性有机物	棕色吹扫捕集瓶	5g 左右样品,密封、避光、4℃以下保 存	7d
10	半挥发性有机物	G(棕色), 60ml	采样瓶装满装实并密封,密封、避光 4℃ 保 存	10d

表 7-2 地下水样品保存要求

		衣/-Z 地		
序号	监测项目	采样容器和体积	保存方法	保存时间
1	浑浊度	P, 250ml	原样	12h
2	臭和味	G, 200ml	原样	6h
3	耗氧量	G, 500m1	原样	2d
4	溶解性总固体	P, 250ml	原样	24h
5	硫化物	P, 250m1	1L 水样中加入 5m11mo1/LNa0H溶液和 4g 抗 坏血酸,使样品的 pH≥11,避光 保存	4d
6	氟化物	P, 250ml	原样	14d
7	氰化物	P, 250ml	加 NaOH , pH>12	12h
8	铜	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
9	锌	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
10	铅	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
11	镉	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
12	铁	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
13	锰	P, 250ml	HN03 , 1L 水样中加浓 HN0310m1	14d
14	钠	P , 250m1	HN03 , pH1~2	14d
15	汞	P, 250ml	HC1,1,如水样为中性,1L水样中加 浓 HC12m1	14d
16	砷	P, 250ml	1L 水样中加入浓 HC110m1	14d
17	铝	P, 100ml	加 HNO3 至 pH<2	30d
18	硒	P , 250ml	1L 水样中加入浓 HC110m1	14d
19	色度	P , 250ml	原样	12h
20	氨氮	P , 250m1	H2SO4 , pH<2	24h
21	挥发性酚类	G , 1L	用 H3P04 调至 pH=2 , 用 0.01~0.02g , 抗坏 血酸去除氯	24h
22	阴离子表面活性剂	P, 250ml	加入甲醛,使甲醛体积浓度为1	7d
23	亚硝酸盐	P, 250ml	原样	24h

24	 硝酸盐	P, 250m1	原样	24h
25	硫酸盐	P, 250m1	原样	7d
26	总硬度	P, 250ml	原样	24h
27	氯化物	P, 250ml	原样	30d
28	碘化物	P, 250m1	原样	24h
29	四氯化碳	G, 250ml	用 1+10HC1 调制 pH<2	24h
30	三氯甲烷	G,250ml	用 1+10HC1 调制 pH<2	24h
31	苯	G,250ml	用 1+10HC1 调制 pH<2	24h
32	甲苯	G,250ml	用 1+10HC1 调制 pH<2	24h
33	二甲苯	G,250ml	用 1+10HC1 调制 pH<2	24h
34	总磷	P, 250ml	HCl, pH<2	24h
35	总铬	P, 250ml	1L 水样中加入浓 HC110m1	24h
36	铬(六价)	P, 250ml	NaOH , pH=8~9	24h
37	总大肠菌群	G, 150ml	原样	4h
38	细菌总数	P, 250m1	1L 水样中加入浓 HC110m1	14d

八、监测分析方法及仪器

8.1 土壤监测分析方法及使用仪器见表 8-1

表 8-1 土壤监测分析方法及使用仪器一览表

检测因子	检测方法	方法来源	使用仪器及编号	检出限
pH 值(无量纲)	土壤 pH 值的测定 电位法	НЈ 962-2018	PHS-3C pH 计 (HLY-37-2020)	/
六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分 光光度法	НЈ 1082-2019	TAS-990AFG 原子 吸收分光光度计 (HLY-16-2019)	0.5 mg/kg
汞	土壤和沉积物 汞、砷、硒、		AFS-8230 原子	0.002 mg/kg
砷	· 铋、锑的测定 微波消解/原子 荧光法	НЈ 680-2013	荧光光度计 (HLY-15-2019)	0.01 mg/kg
铜	- 土壤和沉积物 铜、锌、铅、		TAS-990AFG 原子 吸收分光光度计 (HLY-16-2019)	1mg/kg
铅	镍、铬的测定 火焰原子吸收	НЈ 491-2019		10mg/kg
镍	分光光度法 			3mg/kg
镉	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法	GB/T 17141-1997		0.01 mg/kg
四氯化碳			436-GC 气相色谱 质谱联用仪 (HLY-31-2019)	$2~\mu~\mathrm{g/kg}$
氯仿				2μg/kg
氯甲烷				3 μ g/kg
1,1-二氯乙烷				2μg/kg
1, 2-二氯乙烷	土壤和沉积物 挥发性卤代烃	HT 726 2015		3 μ g/kg
1,1-二氯乙烯	- 的测定 顶空/气相色谱-质谱 法	НЈ 736-2015		2 μ g/kg
顺-1,2-二氯乙烯				3 μ g/kg
反-1,2-二氯乙烯				3 μ g/kg
二氯甲烷				3 μ g/kg
1,2-二氯丙烷				2μg/kg

	T	T		·
1,1,1,2-四氯乙烷				3 μ g/kg
1, 1, 2, 2-四氯乙烷				3 μ g/kg
四氯乙烯				2 μ g/kg
1,1,1-三氯乙烷				1.1 μg/kg
1,1,2-三氯乙烷				1.4
三氯乙烯				μ g/kg 0. 9
1, 2, 3-三氯丙烷				μg/kg 1.0
				μg/kg 1.5
氯乙烯 				μg/kg
苯				1.6 μg/kg
苯	 土壤和沉积物 挥发性有机物		436-GC 气相色谱 质谱联用仪 (HLY-31-2019)	1. 1
	的测定 顶空/气相色谱-质谱	НЈ 642-2013		μg/kg 1.0
1,2-二氯苯	法			μg/kg
1,4-二氯苯				1.2 μg/kg
乙苯				1.2 μg/kg
苯乙烯				1. 6 μ g/kg
甲苯				2.0
)				μ g/kg 3. 6
间/对二甲苯				μg/kg
邻二甲苯				1.3 μg/kg
(2) 甘土				0.09
硝基苯			436-GC 气相色谱 质谱联用仪 (HLY-31-2019)	mg/kg
苯胺	土壤和沉积物 半挥发性有机 物的测定 气相色谱-质谱法	НЈ 834-2017		0.06 mg/kg
2-氯酚				0.06
2 X(F/J				mg/kg
苯并(a)蒽	 土壤和沉积物 多环芳烃的测		436-GC 气相色谱	0.12 mg/kg
苯并(a)芘	定 气相色谱-质谱法	НЈ 805-2016	质谱联用仪 (HLY-31-2019)	0. 17
,				mg/kg

苯并(b) 荧蒽		0. 17
本开(D) 火总		mg/kg
苯并(k) 荧蒽		0.11
本月 (R) 火芯		mg/kg
 		0.14
出		mg/kg
二苯并(a, h) 蒽		0.13
二本介(a, II) 思		mg/kg
 茚并(1, 2, 3-c, d) 芘		0.13
即开(1, 2, 5 C, u) 比		mg/kg
萘		0.09
分 		mg/kg

8.2 地下水监测分析方法及使用仪器见表 8-2。

表 8-2 地下水监测分析方法及使用仪器一览表

检测项目	检测方法	方法来源	使用仪器及编号	检出限
pH (无量纲)	水质 pH 值的测定 电极法	НЈ 1147-2020	DZB-712F 便携式多 参数分析仪 (CJY-03-2020)	/
臭和味	生活饮用水标准检验方法 感官性状和物理指标(3.1 嗅气和尝味法)	GB/T 5750. 4-2006	/	/
(浑)浊度	便携式浊度计法	《水和废水监测 分析方法》(第 四版)第三篇 第 一章 第四节 国 家环境保护总局 (2002年)	WJZ-2B 浊度计 (BSLY-29-2019)	/
耗氧量	生活饮用水标准检验方法 有 机物综合指标 (1.1 耗氧量 酸性高锰酸钾滴定法)	GB/T 5750. 7–2006	/	0.05mg/L
溶解性总固体	生活饮用水标准检验方法 感官性状和物理指标 (8.1 称量法)	GB/T 5750. 4-2006	AUW220D 电子天平 (BSLY-05-2019)	/
氟化物	水质 氟化物的测定 离子选择电极法	GB 7484-1987	PXS-270 离子计 (BSLY-03-2019)	0.05mg/L
铁	水质 铁、锰的测定 火焰原子 吸收分光光度法	GB 11911-1989	TAS-990AFG 原子吸	0.03mg/L
总铬	水质 铬的测定 火焰原子吸 收分光光度法	НЈ 757-2015	收分光光度计	0.03mg/L
钠	水质 钾和钠的测定 火焰原 子吸收分光光度法	GB 11904-1989	(HLY-16-2019)	0.01mg/L

	T	I	1	
汞	水质 汞、砷、硒、铋和锑的 测定 原子荧光法	НЈ 694-2014	AFS-8230 原子荧光 光度计 (HLY-15-2019)	0.04 μ g/L
碘化物	水质 碘化物的测定 高浓度 碘化物容量法	GB/T 5750. 5-2006	/	0.025mg/L
色度(度)	水质 色度的测定 (3 铂钴比色法)	GB 11903-1989	/	/
氨氮	水质 氨氮的测定 纳氏试剂 分光光度法	НЈ 535-2019		0.025mg/L
挥发酚	水质 挥发酚的测定 4-氨基 安替比林分光光度法	НЈ 503-2009		0.0003mg/L
阴离子合 成洗涤剂	水质 阴离子表面活性剂的测 定 亚甲蓝分光光度法	GB 7494-1987		0.05mg/L
亚硝酸 盐氮	水质 亚硝酸盐氮的测定 分 光光度法	GB 7493-1987		0.003mg/L
总磷	水质 总磷的测定 钼酸铵分 光光度法	GB 11893-1989	T6 新世纪 紫外可见分光光度计	0.01mg/L
硝酸盐氮	水质 硝酸盐氮的测定 酚二 磺酸分光光度法	GB 7480-1987	(BSLY-01-2019)	0.02mg/L
硫化物	水质 硫化物的测定 亚甲基 蓝分光光度法	НЈ 1226-2021		0.003mg/L
氰化物	生活饮用水标准检验方法 无 机非金属指标(4.1 异烟酸- 吡唑酮分光光度法)	GB/T 5750. 5-2006		0.004mg/L
硫酸盐	水质 硫酸盐的测定 铬酸钡 分光光度法(试行)	НЈ/Т 342-2007		1.0mg/L
总硬度	水质 钙和镁总量的测定 EDTA 滴定法	GB 7477-1987	/	0.05mmoL/L
氯化物	水质 氯化物的测定 硝酸银滴定法	GB 11896-1989	/	10mg/L
四氯化碳				0.8 µ g/L
三氯甲烷				1.1 μ g/L
苯	水质 挥发性有机物的测定	НЈ 810-2016	436-GC 气相色谱质 谱联用仪	0.8 μ g/L
甲苯	顶空/气相色谱-质谱法 - -		(HLY-31-2019)	1.0 μ g/L
乙苯				1.0 μ g/L
二甲苯				0.8 μ g/L
铝	水质 65 种元素的测定 电感 耦合等离子体质谱法	НЈ 700-2014	SUPEC7000 电感耦合	1. 15 μ g/L

铜			等离子体质谱仪	0. 08 μ g/L
锌				0. 67 μ g/L
砷				0.12 µ g/L
硒				0. 41 μ g/L
铅				0.09 μ g/L
镉				0. 05 μ g/L
锰				0.12 µ g/L
六价铬*	水质 六价铬的测定 二苯碳 酰二肼分光光度法	GB 7467-1987	V-1000 可见分光光 度计	0.004mg/L
总大肠 菌群*	多管发酵法《水和废水监测分 析方法》	《水和废水监测 分析方法》(第 四版)国家环境 保护总局(2002 年)第五篇第二 章五(一)	DNP-9162BS- III 电热恒温培养箱	/
群落总数*	水质 细菌总数的测定 平皿 计数法 HJ 1000-2018	НЈ 1000-2018	DNP-9162BS- III 电热恒温培养箱	/

九、质量保证与质量控制

9.1 自行监测质量体系

本次土壤和地下水监测的检测分析工作由河南晨颉检验技术有限公司统一负责,该公司拥有河南省市场监督管理局颁发的检验检测机构资质认定证书 (编号: 221612050137),符合实验室分析工作的条件和相应资质要求。

凡承担本项目的采样和检测分析的人员,均通过了相关检测因子的上岗证考核,并取得了公司内部上岗证。

9.2 监测方案制定的质量保证与控制

基于第一阶段场地环境调查(资料搜集、现场踏勘和现场访谈)结果,本次监测严格按照《场地环境监测技术导则》(HJ25.2-2019)、《场地环境调查技术导则》(HJ25.1-2019)、《污染场地风险评估技术导则》(HJ25.3-2019)、《重点行业企业

用地调查质量保证和质量控制技术规定(试行)》及《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《地下水质量标准》(GB/T 14848-2017)等要求进行。

9.3 样品采集、保存、流转、制备的质量保证与控制

按照相关技术规定,对地块现场采样过程进行严格的质量控制。

- (1) 由具有场地调查经验且掌握土壤、地下水采样规范的专业技术人员组 成采样小组,组织学习相关技术规范和导则,工作前对相关流程和规范进行交底,为样品采集做好人员和技术准备。
- (2) 采样工具和设备应干燥、清洁,便于使用、清洗、保养、检查和维修,不能和待采样品发生反应,防止采样过程中的交叉污染。钻机采样过程中,对连续多次钻孔的钻探设备进行清洁,同一钻机不同深度采样时对钻探设备、取样装置进行清洗,与土壤接触的其他采样工具重复利用时也进行清洗。一般情况下可用清水清理,也可用待采土让或清洁土进行清洗。此次采样用清水进行清洗,防止样品受到污染或变质。
- (3) 盛装样品的容器必须满足以下要求:容器材质不与样品物质发生反应,没有渗透性;使用前应洗净干燥,具有符合要求的盖塞;容器采用棕色瓶或用铝 箔包裹的玻璃瓶,避免目标物质发生光解。
- (4) 采样工具保持清洁,必要时应用水和有机溶剂清洗,避免采集的样品间的交叉污染。
- (5) 采样时应及时填写采样记录表,包括样品的名称、采样点位、采样层次、采样量、采样日期、采样人员等信息。样品采集完成后在 4℃以下的低温环境中保存,24h内送至实验室分析。

参照《土壤环境监测技术规范》和《地下水环境监测技术规范》的要求。样品完成 采集后,现场填写样品运输单,记录信息包括样品编号、采集日期、分析的参数、送样 联系人等信息。采样现场需配备样品保温箱,样品采集后应立即存放至保温箱内,保证 样品在 4℃低温保存。

在采样小组分工中应明确现场核对负责人,样品装运前应进行样品清点核对,逐件与采样记录单进行核对,保存核对记录,核对无误后分类装箱。如果样品清点结果与采样记录有任何不同,应及时查明原因,并进行说明。样品装运同时需填写样品运送单,明确样品名称、采样时间、样品介质、检测指标、检测方法等信息。

样品流转运输的基本要求是保证样品安全和及时送达。样品应在保存时限内尽快运送回实验室。运输过程中要有样品箱并做好适当的减震隔离,严防破损、混淆或沾污。 对光敏感的样品应有避光外包装。

样品由专人送至实验室,实验室样品接收人员应确认样品的保存条件和保存方式是 否符合要求。收样实验室应清点核实样品数量,并在样品交接单上签字确认。

9.4样品分析的质量保证与控制

9.4.1 监测人员

(a) 监测人员要求

土壤和地下水监测人员应具备扎实的环境监测、分析化学基础理论和专业知识;正确熟练地掌握土壤和地下水监测操作技术和质量控制程序;熟知有关环境监测管理的法规、标准和规定。

(b) 监测人员持证上岗制度

凡承担土壤和地下水监测分析工作、报告监测数据者,必须参加持证上岗考核。经 考核合格并取得(某项目)合格证者,方能报出(该项目)监测数据。

9.4.2 实验室分析

样品采集完成后,密封保存,尽快送入实验室进行分析。分析过程严格按照监测方案中规定的分析测试方法进行实验室分析,并用现场平行、全程空白、盲样、加标等手段做好质量保证质量控制工作,以保证测试结果的精密度和准确度。在实验室分析过程中,通过分析平行样品、加标回收、环保部有证盲样、过程空白等手段对检测过程进行质量控制,确保实验室分析过程准确无误。

9.4.3 检测报告

根据检测数据出具检测报告,并对检测结果根据相应的排放标准、标准限值 超标与否进行研判。检测报告经三级审核,授权签字人签发后按合同要求交付委托方。

9.4.4 质量保障体系

为保证给客户提供满意的服务,公司制定了严格的质量管理体系,同时实验室建立有清晰、可操作的内部质量控制与质量监督制度,并根据实验室的发展不断地进行完善,具体包括:

质量考核:实验室质量部定期实施质量考核计划,以进一步了解人员的测试能力。质量监督:在各个关键流程点实施质量监督,以及时发现问题并在第一时间进行解

决和预防。

内审:为保证管理体系按照质量文件要求运行,促进管理体系规范有序的运作,以 期达到预期的目的和要求,实验室每年至少开展一次内审工作,以全面了解体系的进行 状况、对管理体系运行的符合性进行自我评价,从而有效的保证测 试结果的准确性。

管理评审:为了衡量管理体系是否符合自身实际状况,评价管理体系对自身管理工作是否真正有效,是否能够保证方针和目标的实现,实验室最高管理者定期开展管理评审会议,确保管理体系持续适用和有效,并进行管理体系的不断改进。

实验室日常质量控制数据统计:实验室定期对质控样品的测试结果进行统计,更全面地了解质控结果的总体情况,为质控计划的有效实施提供依据。

能力验证:实验室除积极参加国家规定的能力验证外,也要主动积极参与非强制性的能力验证,借此考核实验室分析人员的能力,将实验室质量考核常态化。

十、监测结果及评价

10.1 土壤监测结果及评价

本次场地土壤评价标准采用《土壤环境质量建设用地土壤污 染风险管控标准》(试行)(GB36600-2018)分析。土壤监测点位坐标见表 10-1, 土壤监测数据见表 10-2-10-4:

检测点位 检测类别 点位坐标 T01 厂区外西北农田 E: 112.854358 N: 34.899729 (背景点) E: 112.853032 T02 废水总排口西侧 N: 34. 910249 E: 112.848195 T03 污水处理系统西侧 N: 34.898957 E: 112.854236 T04 危废临时堆场 N: 34.897529 土壤 E: 112.855145 T05 含铬废水处理系统北侧 N: 34.899776 E: 112.848195 T06 污水处理系统东北侧 N: 34.899385 E: 112.850873 T07 前处理车间(附二号车间)东侧 N: 34.899385 E: 112.855115 T08 前处理车间西侧 N: 34.898976

表 10-1 土壤监测点位坐标

T09 染色干洗车间西侧	E: 112.855175 N: 34.899123
T10 化料仓库东侧	E: 112.850868 N: 34.900522
T11 染色浸酸鞣制车间东侧	E: 112.850846 N: 34.900489
T12 涂饰烫剪车间东侧	E: 112.851431 N: 34.901232
T13 废水调蓄池西侧	E: 112.854148 N: 34.897745
T14 厌氧罐东侧	E: 112.855006 N: 34.897938

表 10-2 土壤检测结果表

衣 10-2 工 基位 侧 结 未衣								
采样点位	Ĺ	T01厂区外西北农 田 (背景点)	T02废水总排口西 侧	T03污水处理系统 西侧	T04 危废临时堆场	T05含铬废水处理 系统北侧	/	/
采样点位坐	坐标	E: 112.854358 N: 34.899729	E: 112.853032 N: 34.910249	E: 112.848195 N: 34.898957	E: 112.854236 N: 34.897529	E: 112.855145 N: 34.899776	达标情	况
采样时间	J	2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15	标准限值 (mg/kg)	是否 达标
pH 值(无量纲)	0-50cm	8. 01	7. 68	7. 40	7. 67	7. 87	/	/
铜	0-50cm	24	28	18	24	25	18000	达标
铅	0-50cm	8	22	23	18	27	800	达标
镍	0-50cm	18	23	14	24	21	900	达标
镉	0-50cm	0. 24	0. 36	0.16	0. 17	0. 18	65	达标
六价铬	0-50cm	未检出	未检出	未检出	未检出	未检出	5. 7	达标
汞	0-50cm	0. 123	0. 040	0. 510	0. 117	0. 212	38	达标
砷	0-50cm	7.40	10. 5	7.04	7. 22	8. 83	60	达标
四氯化碳	0-50cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
氯仿	0-50cm	未检出	未检出	未检出	未检出	未检出	0.9	达标
氯甲烷	0-50cm	未检出	未检出	未检出	未检出	未检出	37	达标

1,1-二氯乙烷	0-50cm	未检出	未检出	未检出	未检出	未检出	9	达标
1,2-二氯乙烷	0-50cm	未检出	未检出	未检出	未检出	未检出	5	达标
1,1-二氯乙烯	0-50cm	未检出	未检出	未检出	未检出	未检出	66	达标
顺-1,2-二氯乙 烯	0-50cm	未检出	未检出	未检出	未检出	未检出	596	达标
反-1,2-二氯乙 烯	0-50cm	未检出	未检出	未检出	未检出	未检出	54	达标
二氯甲烷	0-50cm	未检出	未检出	未检出	未检出	未检出	616	达标
1,2-二氯丙烷	0-50cm	未检出	未检出	未检出	未检出	未检出	5	达标
1, 1, 1, 2-四氯 乙烷	0-50cm	未检出	未检出	未检出	未检出	未检出	10	达标
1, 1, 2, 2-四氯 乙烷	0-50cm	未检出	未检出	未检出	未检出	未检出	6.8	达标
四氯乙烯	0-50cm	未检出	未检出	未检出	未检出	未检出	53	达标
1,1,1-三氯乙 烷	0-50cm	未检出	未检出	未检出	未检出	未检出	840	达标
1,1,2-三氯乙 烷	0-50cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
三氯乙烯	0-50cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
1, 2, 3-三氯丙 烷	0-50cm	未检出	未检出	未检出	未检出	未检出	0.5	达标
氯乙烯	0-50cm	未检出	未检出	未检出	未检出	未检出	0. 43	达标

苯	0-50cm	未检出	未检出	未检出	未检出	未检出	4	达标
氯苯	0-50cm	未检出	未检出	未检出	未检出	未检出	270	达标
1,2-二氯苯	0-50cm	未检出	未检出	未检出	未检出	未检出	560	达标
1,4-二氯苯	0-50cm	未检出	未检出	未检出	未检出	未检出	20	达标
乙苯	0-50cm	未检出	未检出	未检出	未检出	未检出	28	达标
苯乙烯	0-50cm	未检出	未检出	未检出	未检出	未检出	1290	达标
甲苯	0-50cm	未检出	未检出	未检出	未检出	未检出	1200	达标
间/对二甲苯	0-50cm	未检出	未检出	未检出	未检出	未检出	570	达标
邻二甲苯	0-50cm	未检出	未检出	未检出	未检出	未检出	640	达标
硝基苯	0-50cm	未检出	未检出	未检出	未检出	未检出	76	达标
苯胺	0-50cm	未检出	未检出	未检出	未检出	未检出	260	达标
2-氯酚	0-50cm	未检出	未检出	未检出	未检出	未检出	2256	达标
苯并(a) 蒽	0-50cm	未检出	未检出	未检出	未检出	未检出	15	达标
苯并(a)芘	0-50cm	未检出	未检出	未检出	未检出	未检出	1.5	达标
苯并(b) 荧蒽	0-50cm	未检出	未检出	未检出	未检出	未检出	15	达标

苯并(k) 荧蒽	0-50cm	未检出	未检出	未检出	未检出	未检出	151	达标
崫	0-50cm	未检出	未检出	未检出	未检出	未检出	1293	达标
二苯并(a, h) 蒽	0-50cm	未检出	未检出	未检出	未检出	未检出	1.5	达标
茚并 (1, 2, 3-c, d) 芘	0-50cm	未检出	未检出	未检出	未检出	未检出	15	达标
萘	0-50cm	未检出	未检出	未检出	未检出	未检出	70	达标
小结		对 T01-T05 号	号点位分析,检测约 (GB36	吉果均满足《土壤环 6600-2018)中筛炎	不境质量建设用地 适值 第二类用地标	上壤污染风险管控 准要求。	标准(试行)	>>

表 10-3 土壤检测结果表

采样点位		T06 污水处理系统 东北侧	T07 前处理车间 (附二号车间)东 侧	T08 前处理车间西 侧	T09 染色干洗车间 西侧	T10 化料仓库东侧	/	/
采样点位坐林	示	E: 112.855023 N: 34.899385	E: 112.850873 N: 34.900522	E: 112.855115 N: 34.898976	E: 112.855175 N: 34.899123	E: 112.850868 N: 34.900522	达标情	況
采样时间		2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15	标准限值 (mg/kg)	是否 达标
pH 值(无量纲)	0-50 cm	8. 34	8. 21	8. 53	8. 25	7. 55	/	/
铜	0-50 cm	31	29	28	24	30	18000	达标
铅	0-50 cm	21	34	26	13	35	800	达标
镍	0-50 cm	44	36	33	14	37	900	达标

镉	0-50 cm	0.20	0. 13	0. 24	0. 28	0.30	65	达标
六价铬	0-50 cm	未检出	未检出	未检出	未检出	未检出	5. 7	达标
汞	0-50 cm	0. 124	0. 191	0. 344	0. 266	0. 232	38	达标
砷	0-50 cm	7. 00	8. 24	8.41	8.89	7. 64	60	达标
四氯化碳	0-50 cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
氯仿	0-50 cm	未检出	未检出	未检出	未检出	未检出	0. 9	达标
氯甲烷	0-50 cm	未检出	未检出	未检出	未检出	3. 3	37	达标
1,1-二氯乙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	9	达标
1,2-二氯乙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	5	达标
1,1-二氯乙烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	66	达标
顺-1,2-二氯乙 烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	596	达标
反-1,2-二氯乙 烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	54	达标
二氯甲烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	616	达标
1,2-二氯丙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	5	达标

1,1,1,2-四氯乙 烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	10	达标
1, 1, 2, 2-四氯乙 烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	6.8	达标
四氯乙烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	53	达标
1,1,1-三氯乙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	840	达标
1,1,2-三氯乙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
三氯乙烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	2.8	达标
1, 2, 3-三氯丙烷	0-50 cm	未检出	未检出	未检出	未检出	未检出	0.5	达标
氯乙烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	0. 43	达标
苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	4	达标
氯苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	270	达标
1,2-二氯苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	560	达标
1,4-二氯苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	20	达标
乙苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	28	达标
苯乙烯	0-50 cm	未检出	未检出	未检出	未检出	未检出	1290	达标

甲苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	1200	达标
间/对二甲苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	570	达标
邻二甲苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	640	达标
硝基苯	0-50 cm	未检出	未检出	未检出	未检出	未检出	76	达标
苯胺	0-50 cm	未检出	未检出	未检出	未检出	未检出	260	达标
2-氯酚	0-50 cm	未检出	未检出	未检出	未检出	未检出	2256	达标
苯并(a)蒽	0-50 cm	未检出	未检出	未检出	未检出	未检出	15	达标
苯并(a)芘	0-50 cm	未检出	未检出	未检出	未检出	未检出	1.5	达标
苯并(b) 荧蒽	0-50 cm	未检出	未检出	未检出	未检出	未检出	15	达标
苯并(k) 荧蒽	0-50 cm	未检出	未检出	未检出	未检出	未检出	151	达标
崫	0-50 cm	未检出	未检出	未检出	未检出	未检出	1293	达标
二苯并(a, h) 蒽	0-50 cm	未检出	未检出	未检出	未检出	未检出	1.5	达标
茚并 (1, 2, 3-c, d) 芘	0-50 cm	未检出	未检出	未检出	未检出	未检出	15	达标
萘	0-50 cm	未检出	未检出	未检出	未检出	未检出	70	达标

小结

对 T06-T10 号点位分析,检测结果均满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)中筛选值 第二类用地标准要求。

表 10-4 土壤检测结果表

采样点位		T11 染色浸酸鞣制车 间东侧	T12 涂饰烫剪车间东 侧	T13 废水调蓄池西侧	T14 厌氧罐东侧	/	/
采样点位坐林	示	E: 112.850846 N: 34.900489	E: 112.851431 N: 34.901232	E: 112.854148 N: 34.897745	E: 112.855006 N: 34.897938	达标性	青况
采样时间		2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15	2023. 6. 15 标准限值 5. (mg/kg) 5.	
pH 值(无量纲)	0-50cm	7. 95	7. 94	7.44	8. 10	/	/
铜	0-50cm	30	31	26	29	18000	达标
铅	0-50cm	24	35	25	10	800	达标
镍	0-50cm	26	32	16	21	900	达标
镉	0-50cm	0. 24	0. 24	0. 26	0. 13	65	达标
六价铬	0-50cm	未检出	未检出	未检出	未检出	5. 7	达标
汞	0-50cm	0. 443	0. 250	0. 549	0. 253	38	达标
砷	0-50cm	8. 64	6. 12	7.62	8. 16	60	达标
四氯化碳	0-50cm	未检出	未检出	未检出	未检出	2.8	达标
氯仿	0-50cm	未检出	未检出	未检出	未检出	0.9	达标

氯甲烷	0-50cm	10.0	8. 6	未检出	未检出	37	达标
1,1-二氯乙烷	0-50cm	未检出	未检出	未检出	未检出	9	达标
1,2-二氯乙烷	0-50cm	未检出	未检出	未检出	未检出	5	达标
1,1-二氯乙烯	0-50cm	未检出	未检出	未检出	未检出	66	达标
顺-1,2-二氯乙烯	0-50cm	未检出	未检出	未检出	未检出	596	达标
反-1,2-二氯乙烯	0-50cm	未检出	未检出	未检出	未检出	54	达标
二氯甲烷	0-50cm	未检出	未检出	未检出	未检出	616	达标
1,2-二氯丙烷	0-50cm	未检出	未检出	未检出	未检出	5	达标
1,1,1,2-四氯乙烷	0-50cm	未检出	未检出	未检出	未检出	10	达标
1, 1, 2, 2-四氯乙烷	0-50cm	未检出	未检出	未检出	未检出	6.8	达标
四氯乙烯	0-50cm	未检出	未检出	未检出	未检出	53	达标
1,1,1-三氯乙烷	0-50cm	未检出	未检出	未检出	未检出	840	达标
1,1,2-三氯乙烷	0-50cm	未检出	未检出	未检出	未检出	2.8	达标
三氯乙烯	0-50cm	未检出	未检出	未检出	未检出	2.8	达标
1, 2, 3-三氯丙烷	0-50cm	未检出	未检出	未检出	未检出	0.5	达标

氯乙烯	0-50cm	未检出	未检出	未检出	未检出	0. 43	达标
苯	0-50cm	未检出	未检出	未检出	未检出	4	达标
氯苯	0-50cm	未检出	未检出	未检出	未检出	270	达标
1,2-二氯苯	0-50cm	未检出	未检出	未检出	未检出	560	达标
1,4-二氯苯	0-50cm	未检出	未检出	未检出	未检出	20	达标
乙苯	0-50cm	未检出	未检出	未检出	未检出	28	达标
苯乙烯	0-50cm	未检出	未检出	未检出	未检出	1290	达标
甲苯	0-50cm	未检出	未检出	未检出	未检出	1200	达标
间/对二甲苯	0-50cm	未检出	未检出	未检出	未检出	570	达标
邻二甲苯	0-50cm	未检出	未检出	未检出	未检出	640	达标
硝基苯	0-50cm	未检出	未检出	未检出	未检出	76	达标
苯胺	0-50cm	未检出	未检出	未检出	未检出	260	达标
2-氯酚	0-50cm	未检出	未检出	未检出	未检出	2256	达标
苯并(a) 蒽	0-50cm	未检出	未检出	未检出	未检出	15	达标
苯并(a) 芘	0-50cm	未检出	未检出	未检出	未检出	1.5	达标

苯并(b) 荧蒽	0-50cm	未检出	未检出	未检出	未检出	15	达标
苯并(k) 荧蒽	0-50cm	未检出	未检出	未检出	未检出	151	达标
薜	0-50cm	未检出	未检出	未检出	未检出	1293	达标
二苯并(a, h) 蒽	0-50cm	未检出	未检出	未检出	未检出	1.5	达标
茚并(1, 2, 3−c, d) 芘	0-50cm	未检出	未检出	0. 15	0.14	15	达标
萘	0-50cm	未检出	未检出	未检出	未检出	70	达标
小结		对 T11-T14 号点位	分析,检测结果均满 (GB36600-201		设用地土壤污染风险 ⁶ 用地标准要求。	管控标准(证	(行)》

根据表中统计结果表明:布设的 14 个土壤监测点位除六价铬外,其他重金属均不同程度的检出,其中砷的含量范围为 6.12-10.5mg/kg,镉的含量范围为 0.13-0.36mg/kg;铜的含量范围为 18-31mg/kg;铅的含量范围为 8--35mg/kg;汞的含量范围为 0.040-0.549mg/kg;镍的含量范围为 14-44mg/kg;pH 值检测范围为 7.40-8.01;挥发性有机物的含量范围均为未检出。各项污染物检测结果均未超过《土壤环境质量 建设用地土壤污染 风险管控标准(试行)》(GB 36600-2018)中第二类建设用地相应的风险筛选值。土壤监测点 pH 值检测结果在 7.85-8.23 之间。具体检测报告见附件 3。

10.2 地下水监测结果及评价

地下水评价标准采用《地下水质量标准》(GB/T 14848-2017)。地下水监测点位坐标见表 10-5,地下水监测数据见表 10-6:

表 10-5 地下水监测点位坐标

检测类别	检测点位	点位坐标
	D01 项目上游水井	E: 112.853031 N: 34.910248
地下水	D02 厂区水井	E: 112.849752 N: 34.898400
	D03 项目下游水井	E: 112.850695 N: 34.898315

表 10-6 地下水监测结果

采样点位	D01 项目上游水井	D02 厂区水井	D03 项目下游水井		
采样点位 坐标	E: 112.853031 N: 34.910248	E: 112.849752 N: 34.898400	E: 112.850695 N: 34.898315	/	
采样日期	2023. 6. 15	2023. 6. 15	2023. 6. 15	达标情	
样品描述	透明、无色、无异味	透明、无色、无异味	透明、无色、无异 味	标准限值 (mg/L)	是否 达标
pH(无量纲)	7. 7	7. 6	7. 5	6. 5-8. 5	达标
(浑)浊度 (NTU)	0. 210	0. 201	0. 292	≤3	达标
臭和味 (等级/强度)	0/无	0/无	0/无	/	/
耗氧量 (mg/L)	2.06	2.85	1. 67	≤3.0	达标
溶解性总固 体(mg/L)	583	567	544	≤1000	达标
硫化物 (mg/L)	0.004	0.004	0.004	≤0.02	达标
氟化物 (mg/L)	0.45	0. 44	0. 56	≤1.0	达标
氰化物 (mg/L)	未检出	未检出	未检出	≤0.05	达标
铜(μg/L)	7. 88	2. 64	14. 5	≤1.00 (mg/L)	达标
锌(μg/L)	8. 12	7. 40	28. 5	≤1.00 (mg/L)	达标

铅 (μg/L)	0. 38	0. 32	0.40	≤0.01 (mg/L)	达标
镉 (μg/L)	未检出	未检出	未检出	≤0.005 (mg/L)	达标
铁 (mg/L)	0.09	0. 11	0. 15	≤0.3	达标
锰 (μg/L)	3. 46	88.1	96. 8	≤0.10 (mg/L)	达标
钠 (mg/L)	32. 5	31.2	91. 5	≤200	达标
汞 (μg/L)	未检出	未检出	未检出	≤0.001 (mg/L)	达标
砷 (μg/L)	1. 22	0. 92	0.97	≤0.01 (mg/L)	达标
铝 (μg/L)	未检出	未检出	未检出	≤0.20 (mg/L)	达标
硒 (μg/L)	1.09	1. 42	1.56	≤0.01 (mg/L)	达标
色度 (度)	5	5	5	≤15	达标
氨氮 (mg/L)	0. 307	0.344	0. 333	≤0.50	达标
挥发酚 (mg/L)	未检出	未检出	未检出	≤0.002	达标
阴离子合成 洗涤剂 (mg/L)	未检出	未检出	未检出	≤0.3	达标
亚硝酸盐氮 (mg/L)	未检出	未检出	未检出	≤1.00	达标
硝酸盐氮 (mg/L)	2. 27	5. 75	0. 79	≤20.0	达标
硫酸盐 (mg/L)	152	218	127	≤250	达标
总硬度 (mg/L)	256	410	369	≪450	达标
氯化物 (mg/L)	32	183	64	≤250	达标
碘化物	未检出	未检出	未检出	≤0.08	达标
四氯化碳 (μg/L)	未检出	未检出	未检出	≤2.0	达标
三氯甲烷 (μ g/L)	未检出	未检出	未检出	≤60	达标
苯 (μ g/L)	未检出	未检出	未检出	≤10.0	达标
甲苯 (μ g/L)	未检出	未检出	未检出	€700	达标

乙苯 (μ g/L)	未检出	未检出	未检出	≤300	达标
二甲苯 (μ g/L)	未检出	未检出	未检出	≤500	达标
总磷 (mg/L)	0.05	0.04	0.03	/	/
总铬 (mg/L)	3. 23	3. 27	3. 24	/	/
六价铬*	未检出	未检出	未检出	≤0.05	达标
总大肠菌群*	未检出	未检出	未检出	≤30	达标
细菌总数*	12	17	21	≤100	达标

pH: 本次调查的地块内地下水样品 pH 值范围符合《地下水质量标准》(GB/T14848-2017) Ⅲ类标准。

重金属和无机物:本次调查分析了地块内地下水中的铁、锰、铜、锌、铝、钠、汞、砷、硒、镉、六价铬、铅共 12 项重金属元素和无机物。检测结果表明,采集的地下水样品中重金属元素和无机物均低于《地下水质量标准》(GB/T 14848-2017)III类标准限值,满足标准要求。

常规因子:本次调查分析了地块内地下水中的色度、嗅和味、浑浊度、总硬度、 性总固体、氯化物、硫酸盐、挥发酚类、阴离子表面活性剂、耗氧量、氨氮、硫化物、亚硝酸盐氮、硝 酸盐氮、氰化物、氟化物、碘化物共 18 项因子。检测结果表明,采集的地下水样品中满足《地下水质量标准》(GB/T 14848-2017)III类标准限值。

有机物:本次调查分析了地块内地下水中的苯、甲苯、三氯甲烷、四氯化碳共 4 项因子。 检测结果表明,采集的地下水样品中这四项有机物均为未检出,低于《地下水质量标准》 (GB/T14848-2017) III类标准限值,满足标准要求。具体检测报告见附件 2。

十一、监测总结论

依据《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)及《地下水环境监测技术规范》(HJ 164-2020)附录F中所要求的监测因子,及《焦作市生态环境局关于公布 2023 年土壤污染重点监管单位名录的通知》,结合本项目生产情况及"三废"处理情况,本次土壤环境自行监测共布设 14 个采样点位,地下水布设 3 个采样点位。表层样品采样深度均为表层 0-0.5m 处土壤,深层样品采样深度为重点设施接地面往下 1m 范围内土壤。

(一) 土壤

经分析,该企业土壤中重金属、挥发性有机物等污染物均不超标,均满足《土壤环境质量建设用地土壤污染风险管控标准》(试行)(GB36600-2018)中筛选值第二类用地标准限值要求。

(二) 地下水

本年度地下水监测点位3个,分别位于地下水流向上游、厂区内、地下水流向下游 方向。

本年度色度、嗅和味、浑浊度、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发酚、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、六价铬、铅、三氯甲烷、四氯化碳、苯、甲苯、亚硝酸盐、总磷、总铬、总大肠菌群、菌落总数、乙苯、二甲苯因子的检测结果均满足《地下水质量标准》(GB/T 14848-2017)III 类标准限值要求。

十二、建议与措施

孟州市光宇皮业有限公司属于皮毛鞣制加工,生产过程中产生的废气、废渣、废水等"工业三废"应妥善处理、处置。定期检修生产设备,防止罐体等出现泄漏的风险;原辅材料、产品、固体废物等的转运、输送或卸载等规范操作,减小废气等污染物无组织排放;确保"三废"(废气、废水、固体废物)处理设备运行良好,均达标排放。主要建议如下:

- (1) 定期检查罐区、生产区、污水处理站、危废间防渗工作,保证场地水泥路面 完好,避免原料泄露污染土壤;
 - (2) 原辅材料装卸时,尽可能避免泼洒至路面,一旦洒至路面,立即清除;
 - (3) 生产车间尽可能减少跑、冒、滴、漏;
 - (4) 定期维护环保设施,确保污染物长期、稳定、达标排放;
- (5) 开展跟踪监测工作,定期对周边环境空气及地下水进行监测,一旦出现异常,及时上报当地环保部门。

检验检测机构资质认定证书

证书编号: 191612050265

名称: 河南晨颉检验技术有限公司

地址: 河南省焦作市示范区玉溪路1129号总部新城(南区)52号楼4层401 号

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

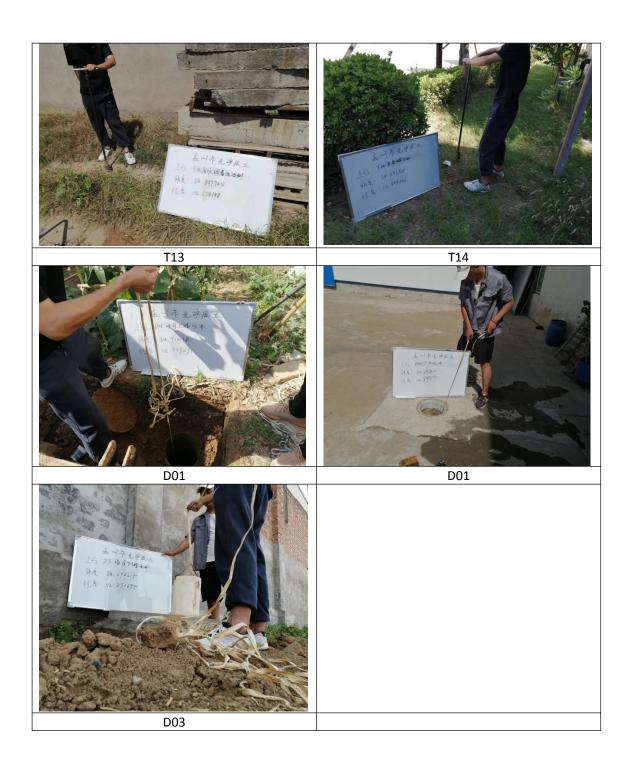
许可使用标志

发证日期:

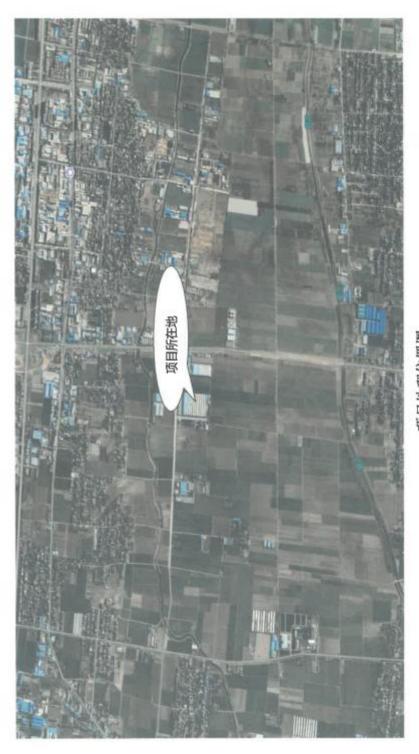
2020年12月28日

有效期至:

2025年10月28日


发证机关:

河南省市场监督管理局


本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

附图 4 项目地理位置图

项目地理位置图

焦作市生态环境局文件

焦环文[2023]6号

关于公布焦作市 2023 年土壤污染 重点监管单位名录的通知

各县(市、区)分局、城乡一体化示范区生态环境局:

为贯彻落实《中华人民共和国土壤污染防治法》《土壤污染 防治行动计划》,按照《环境监管重点单位名录管理办法》《工 矿用地土壤环境管理办法(试行)》要求,我局制定了《焦作市 2023年土壤污染重点监管单位名录》,现印发你们。请你们切实 加强土壤环境监管,督促指导辖区内土壤污染重点监管单位做好 如下工作:

- 一、根据《中华人民共和国土壤污染防治法》第二十一条规 定,12月底前在排污许可证中载明法定义务。
 - 二、严格控制有毒有害物质排放,12月底前向县级生态环境

主管部门报告排放情况。新纳入的重点监管单位如有地下储存有 毒有害物质的,应填写有毒有害物质地下储罐信息备案表,于 4 月 15 日前报送所在县级生态环境主管部门,并对填报内容的真 实性、全面性、完整性负责。所有重点监管单位新、改、扩建项 目地下储罐储存有毒有害物质的,应当在项目投入生产或者使用 之前、将地下储罐的信息报所在县级生态环境主管部门备案。

三、建立土壤污染隐患排查制度,保证持续有效防止有毒有害物质渗漏、流失、扬散。新纳入的单位要建立隐患排查组织领导机构,配备相应的管理和技术人员,自行或者委托第三方专业机构按照《重点监管单位土壤污染隐患排查指南(试行)》要求,制定隐患排查工作计划,以厂区为单位开展一次全面、系统的土壤污染隐患排查,及时发现土壤污染隐患,建立隐患排查台账,制定隐患整改方案,按照整改方案进行隐患整改,形成隐患整改台账。隐患排查活动结束后,应建立隐患排查档案并存档备查,同时编制《土壤污染隐患排查报告》,9月底前将隐患排查情况报县级生态环境主管部门。原有单位要按照已建立的隐患排查制度,落实隐患排查工作。

四、开展土壤和地下水自行监测。各单位应当按照要求,参照《工业企业土壤和地下水自行监测技术指南(试行)》,自行或委托第三方专业机构制定、实施自行监测方案,开展土壤及地下水自行监测,9月底前将监测结果报县级生态环境主管部门,并将结果主动向社会公开。

五、做好新、改、扩建项目的土壤污染防治。新、改、扩建

项目进行环境影响评价时,做好项目用地土壤和地下水环境现状调查。调查中发现污染物含量超过土壤污染风险管控标准的,应当参照污染地块土壤环境管理有关规定开展详细调查、风险评估、风险管控、治理与修复等活动。

六、严防拆除活动土壤污染。拆除涉及有毒有害物质的生产 设施设备、构筑物和污染治理设施的,应当按照有关规定,事先 制定企业拆除活动污染防治方案和拆除活动环境应急预案,并在 拆除活动前十五个工作日报所在县级生态环境、工业和信息化主 管部门备案。拆除活动结束后,编制《企业拆除活动环境保护工 作总结报告》,做好后续地块土壤污染状况调查工作的衔接。

七、落实腾退地块土壤污染防治。按照《工矿用地土壤环境 管理办法(试行)》要求,在终止生产经营活动前,生产经营用 地用途变更前,或者土地使用权收回、转让前,依法开展土壤污 染状况调查,编制调查报告。调查报告要及时上传全国污染地块 土壤环境管理信息系统,通过网站等便于公众知晓的方式向社会 公开。

八、2023年年底前,配合市生态环境部门完成一次土壤污染 重点监管单位周边土壤环境监督性监测。

附件: 焦作市 2023 年土壤污染重点监管单位名录

附件

焦作市 2023 年土壤污染重点监管单位名录

序号	县(市)区	企业名称	类型
1	山阳区	风神轮胎股份有限公司	原有
2	山阳区	焦作优艺环保科技有限公司	原有
3	中站区	多氟多新材料股份有限公司	原有
4	中站区	焦作煤业 (集团) 开元化工有限责任公司	原有
5	中站区	龙佰集团股份有限公司	原有
6	中站区	河南长隆科技有限公司	原有
7	中站区	风神轮胎股份有限公司爱路驰分公司	原有
8	中站区	河南佰利联新材料有限公司	原有
9	马村区	焦作健康元生物制品有限公司	原有
10	马村区	焦作市顺和物资回收有限公司	原有
11	马村区	焦作万方铝业股份有限公司	原有
12	沁阳市	吴华宇航化工有限责任公司	原有
13	沁阳市	河南晋控天庆煤化工有限责任公司	原有
14	沁阳市	河南超威电源有限公司	原有
15	沁阳市	河南超威电源有限公司沁南分公司	原有
16	沁阳市	河南超威正效电源有限公司	原有
17	沁阳市	焦作润扬化工科技有限公司	原有
18	沁阳市	河南普鑫电源有限公司	原有
19	沁阳市	沁阳金隅冀东环保科技有限公司	原有
20	沁阳市	河南尚宇新能源股份有限公司	新增
21	沁阳市	河南永续再生资源有限公司	原有

22	孟州市	撒尔夫 (河南) 农化有限公司	原有
23	孟州市	河南晶能电源有限公司	原有
24	孟州市	孟州市锐鑫金属表面处理有限公司	原有
25	孟州市	河南省格林沃特环保科技有限公司	原有
26	孟州市	孟州市光宇皮业有限公司	原有
27	孟州市	焦作隆丰皮草企业有限公司	原有
28	孟州市	孟州市华兴生物化工有限责任公司	原有
29	孟州市	孟州盛伟化工有限公司	新增
30	孟州市	河南惠尔邦环保科技有限公司	新增
31	博爱县	博爱新开源医疗科技集团股份有限公司	原有
32	博爱县	河南新黄河蓄电池有限公司	原有
33	博爱县	焦作市新科资源综合利用研发有限公司	原有
34	博爱县	焦作市鑫润源新材料有限公司	原有
35	博爱县	焦作新景科技有限公司	新增
36	武陟县	焦作市东坡科技开发有限公司	新增
37	武陟县	武陟县伊兰实业有限公司	新增
38	武陟县	武陟县明生皮业有限公司	新增
39	修武县	中铝中州铝业有限公司	原有
40	温县	河南宁泰环保科技有限公司	原有
41	温县	河南恒昌再生资源有限公司	原有
42	温县	焦作市信慧实业有限公司	新增
43	温县	焦作市兴富化工有限公司	新增
44	温县	温县五岳金属制品有限公司	新增
45	温县	河南浩泰环保科技有限公司	新增

河南晨颗粒验技术有限公司制

			明/密)	加核	章	起手	瞬	司	北京	畑				任务公	1/11-4 2
各注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	测定率(%)	测定对数	合格率(%)	测定率(%)	測定对数	样品个数	120 20 20 10	容 繼續日	检测分析质 任务名称: 孟州市光宇皮业有限公司土壤和地下水自行检测	CI/II-4 2-2-03-C/0-2021
年、汞、锅、杆、锅板一米	pH测试仪领		100		100	14. 2	22	100	14. 2	2	14	94		V有限公司土	
pH、鳢、酱、 饲养油样; 水	pH 测试仪测试前进行 pH 值校准,		100		100	14. 2	2	100	14. 2	2	14	账		检测分	
藥、大价格分 价格額—加标回	值校准, pH		100		100	14.2	2	100	14. 2	2	14	撤		析质量招 ^{行检测}	
到分析 14.2%明 到收实验: 汞、	=6, 86, 9, 18,	皮	100		100	14. 2	12	100	14. 2	22	14	鍧	土壌	检测分析质量控制结果统计表 ^{到地下水自行检测} 编号:CJ2023W	
汞、镉、pH、镧、铝、镍、六价格分别分析14.2%用码和密码平行样; 铅、砷、汞、镧、辐膜一密码标准样; 六价格做一加标回收实验; 汞、砷分别做两个全程空白; 结果合格。	pH=6.86、9.18,校准合格。	赵利红	100		100	14.2	2	100	14. 2	22	14	铅	,,,,,,	果统计表 编号:CJ2023WT0485	
羊、铅、砷、汞 全程空白;结果			100		100	14. 2	ы	100	14. 2	12	14	樂		81	
、制、镍分别做 合格。					100	14. 2	2	100	14. 2	2	14	рН		共 10 页	
版一期码标准				100	100	14. 2	2	100	14. 2	to	14	六价铅		第 1 页	

CJ/JL-4.2-2-03-C/0-2021

检测分析质量控制结果统计表

_			明/密	拍板	可	七里	册	司	北京	出			
以器校准情况 备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	測定率(%)	測定对数	合格率(%)	测定率(%)	测定对数	样品个数	H NG KWA	艾 曼語口
直銭の服べ				100	100	14. 2	2	100	7. 1	1	14	四氟代聚	
氯仿、				100	100	14. 2	12	100	7. 1	_	14	製仿	
(甲烷、1				100	100	14.2	2	100	7.1	1	14	東甲烷	
四集名篆、集份、集甲烷、1,1-二集乙烷、1,2-二集乙烷、1,1-				100	100	14.2	2	100	7.1	1	14	1,1-二氟乙烷	
2-二氧乙烷、1,1		程尚		100	100	14.2	2	100	7.1	1	14	1,2-二氧乙烷	士嬢
1,2-二氟乙烷、1,1-二氟乙烯、原-1,2-二氟乙烯、		傚		100	100	14.2	2	100	7. 1	1	14	1,1-二氯乙烯	
				100	100	14, 2	2	100	7.1	1	14	原-1,2-二氯乙烯	
反-1,2-二氯乙烯、				100	100	14. 2	2	100	7.1	1	14	及-1,2-二寅 乙鄉	
絡、二質甲				100	100	14. 2	10	100	7. 1	1	14	二寅甲烷	

河南层颜检验技术有限公司制

2003年6月30日

填表: 落葉

校校: 深名名

市核: 15/19人

CJ/JL-4.2-2-03-C/0-2021

检测分析质量控制结果统计表

			明/密	加板	यो	北京	瞬	司	記片	思			
备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	測定率(%)	測定对数	合格率(%)	測定率(%)	測定对数	样品个数	HWWW	本 題前日
1,2-二氯丙烷、1,1,12-四氯乙烷、1,1,2,2-四氯乙烷、 烷、氯乙烯分别分析7,1%明码和14,2%密码平行样、				100	100	14. 2	2	100	7.1	300	14	1,2-二氯丙烷	
2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1 、氟乙烯分别分析 7,1%明码和 14.2%密码平行样、一加标回收3				100	100	14.2	2	100	7.1	-	14	1,1,1,2-四 氟乙烷	
乙烷、1,1,2,5 男码和 14.2%				100	100	14.2	2	100	7.1	-	14	1,1,2,2-四 第乙烷	
2-四氟乙烷、 密码平行样、				100	100	14.2	22	100	7.1	_	14	四氯乙烯	
1 12		程肖筱		100	100	14.2	2	100	7. 1	-	14	1.1.1-三氟乙烷	土壌
三氟乙烷、1、				100	100	14.2	2	100	7. 1	1	14	1,1,2-三氟 乙烷	
1.2-三氯乙烷 2.日;1.1.1-				100	100	14. 2	22	100	7.1	1	14	三美乙	
《乙烯、1.1.1-三氯乙烷、1.1.2-三氯乙烷、三氯乙烯、1.2.3-三氯丙加标回收实验、一全程序空白;1.1.1-三氯乙烷、1.1.2-三氯乙烷				100	100	14.2	10	100	7.1	1	14	1,2,3-三氯丙烷	
1,2,3-三氯丙 2-三氯乙烷、				100	100	14.2	10	100	7. 1	1	14	無乙烯	

河南晨旅检验技术有限公司制

2023年 6月30日

填表: 確幸加

	No.		明/密	加板	可	# 12	粉	中	电话	思思				
备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	测定率(%)	測定对数	合格率(%)	测定率(%)	測定対数	样品个数	200	目別順替	The state of the s
· 推 通				100	100	14. 2	12	100	7.1	1	14	₩		
拼、篾米、1,2-二篾米、				100	100	14. 2	63	100	7. 1	-	14	製米		A. Carried D. L. Britania
資本、1,4-1 資米、				100	100	14. 2	2	100	7.1	1	14	1,2-二氯苯		Little Course
來、類米、1,2-二氪米、1,4-二氮米、乙米、苯乙烯、甲米、同二甲米+ストト 受口及合本 ************************************				100	100	14. 2	22	100	7.1	1	14	1,4二氮苯		4 100 000
乙烯、甲苯		_		100	100	14.2	2	100	7, 1	-	14	本乙	+	Sale:
甲苯、何二甲苯+对二甲		程肖筱		100	100	14.2	2	100	7.1	1	14	苯乙烯	土壤	COLOT HOSPATOS C. Sas
对二甲苯,				100	100	14. 2	12	100	7.1	1	14	中来		COLOL
、第二甲苯分别分析7.1%明码和14.2%				100	100	14. 2	22	100	7. 1	1	14	间二甲苯+对二甲苯		M NI M
明码和14.2%				100	100	14. 2	2	100	7.1	1	14	邻二甲苯		25 4 JK

河南是颜检验技术有限公司制

填表: 佛本弘

校核:光亮的

审核: /3.州病

2023年6月30日

			期/密	加核	市	北京	暖	章	記片	墨				ı
	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	测定率(%)	测定对数	合格率(%)	测定率(%)	测定对数	样品个数	25	泰 繼后田	
監禁者 林野				100	100	14.2	2	100	7. 1	1	14	硝基苯		
				100	100	14.2	10	100	7. 1)ees	14	推環		
2.質熱 味井				100	100	14.2	10	100	7.1	1	14	2-氣節		
林井/a/耕 林井/a				100	100	14. 2	12	100	7. 1		14	苯并(a)蒽		
15t 4t 4t/15t		程		100	100	14. 2	12	100	7. 1	1	14	苯井(a)芘	- 上模	
は 株本八八井 報り		程肖筱		100	100	14. 2	2	100	7. 1	1	14	苯并(b)荧蒽	,000	4
A Link				100	100	14.2	22	100	7. 1	1	14	苯并(k)荧蒽		
t / 排 / / D				100	100	14.2	13	100	7. 1	1	14	漸		1
14.00日/01 m 计///2/2/2 44.7/4				100	100	14. 2	22	100	7.1	н	14	二苯并(a,h)蒽		

河南晨越检验技术有限公司制

2023年6月30日

校核: 张克佑

审核: /5/網局

CJ/JL-4.2-2-03-C/0-2021

填表				明/密?	加杨	前	北岸	勝	मी	北北	州				
填表:涂金色	备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	測定率(%)	測定对数	合格率(%)	測定率(%)	測定对数	样品个数	14 POST 24 FEB.	林淵福田	the second of th
校核: 杂克公	茚井(1,2,3-c,d)芘、紫5		程肖筱		100	100	14.2	2	100	7, 1	1	14	茚并(1,2,3-c,d)芘		
	分别分析 7.19				100	100	14.2	2	100	7.1	1	14	樂		The second of the second
申核: ジダイ	茚并(1,2,3-c,d)芘、裴分别分析 7.1%明码和 14.2%密码平行样、一加标回收实验,结果合格。													土壌	4
2023	(实验, 结果合格。														
年6月30日															2 22

CJ/JL-4.2-2-03-C/0-2021

检测分析质量控制结果统计表

		-		明/密和	加标	না	北京	瞬	前	北京	温			
	备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	測定率(%)	测定对数	合格率(%)	测定率(%)	测定对数	样品个数	THE POST OF THE	检测项目
一全程序空白; 结功	pH 分析 33.3%明码平行样并做一明码标准样:耗氧量、铁、锰、铜、锌、汞、砷、和密码平行样,汞做一密码标准样,汞、砷、硒、镉、铅分别做一加标回收实验;	多参数分析仪测试前进行 pH 值校准, 使用前校准值为 4.00、6.86、	曹博、范金虎	100					100	33, 3	1	3	PH	
结果合格。	平行样并借 被一密码标	前进行 pH (100	33. 3	_	100	33. 3	-	3	耗氣量	
	(一明码)	植校准,	陂			100	33, 3	1	100	33, 3	1	ω	栾	
	宗推样:	使用前校	赵利红	100	100	100	33. 3	_	100	33, 3	-	ట	*	
	耗知量、1 点、锅、食	准值为4				100	33, 3	1	100	33, 3	1	w	密	
	表、锰、 ⁴ 8分别做	00, 6, 8				100	33. 3	1	100	33, 3	1	3	抑	地下水
	道、容、	5, 9, 18,				100	33, 3	1	100	33, 3	-	3	뿦	
		校准合格,				100	33, 3	1	100	33, 3	-	ಎ	報	
	激素		李梦琦		100	100	33. 3	1	100	33. 3	1	w	華	
	、铅、铅分别分析、锌、砷、硒、铅	使用后用标准样复核,			100	100	33. 3	1	100	33, 3	_	ಚ	部	
	7 543				100	100	33. 3	1	100	33, 3	_	3	部	
	3.3%期码 锡分别做	结果合格。			100	100	33. 3	-	100	33, 3	-	ಎ	由	

河南层燃检验技术有限公司制

			明/密	加杨	市	七里	勝	नो	43	思				
备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	标回收合格率(%)	合格率(%)	测定率(%)	測定对數	合格率(%)	测定率(%)	測定对数	样品个数	The state of the s	恭 繼屆四	
硫化物、氰化物、					100	33, 3	1	100	33, 3	-	cu	氰化物		
		超利红		100	100	33. 3	-	100	33. 3	1	ಬ	硫化物		
美名物、					100	33. 3	-	100	33, 3	-	w	黄化钴		
三銭甲烷、四				100	100	33. 3	1	100	33, 3	_	ట	三萬甲烷		
四類化碳、米、		程肖彼		100	100	33. 3	ш	100	33, 3	_	w	四氟化聚		
, 甲苯, 色度,				100	100	33. 3	-	100	33, 3	1	ಬ	*	热下水	
				100	100	33, 3	1	100	33, 3	1	3	世業	*	
复氮、聚1		н			100	33, 3	1	100	33. 3	1	3	色度		1000000
氧化物、总硬度、		王扬帆	100		100	33, 3	1	100	33, 3	1	ಎ	剣剣		
					100	33, 3		100	33, 3		3	黄化物		10000
碘化物分别分析 33.3%明		张娟			100	33, 3	-	100	33, 3	-	ω	总硬度		410
33.3%時					100	33, 3	1	100	33, 3	-	ಚ	碘化物		0 37

河南晨氪检验技术有限公司制

填表: 滿辛戒

校核: 张克农

审核: 设施

2023 年

6月30日

CJ/JL-4.2-2-03-C/0-2021

检测分析质量控制结果统计表

			明/密	加杨	ث	電片	畷	章	記字	墨				244
	仪器校准情况	检测分析人员	/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	测定率(%)	测定对数	合格率(%)	测定率(%)	测定对数	样品个数	2 %	本当品 田	THE PART OF THE PARTY OF THE PA
Marie State Commercial					100	33. 3	1	100	33. 3	1	ಬ	阴离子合成洗涤剂		A Second Second Control
B 113 BH 102					100	33, 3	1	100	33, 3	-	ω	挥发酚		Take a state
- 1		张素红			100	33. 3	1	100	33, 3	1	3	亚硝酸盐氮		The State of
Section 14 to 15 t					100	33. 3	1	100	33. 3	1	ట	硝酸盐氮		440-
			100		100	33, 3	1	100	33, 3	1	ಚ	硫酸盐	基下水	the transfer of the table
					100	33. 3	1	100	33, 3	-	ಚ	(O)		Chick on a new
1		赵利红			100	33. 3	1	100	33, 3	1	ಬ	溶解性总固体		7
		张娟			100	33. 3	1	100	33. 3	1	w	吳和味		16 011
THE REAL PROPERTY.		曹博、范金虎						100	33. 3	1	ಬ	(澤) 独度		25 10 25

河南层植检验技术有限公司制

項表: 茶种

校核: 劣免险

审核: るが人

2023

冊

6月30日

填表:		-		明/密码	拍标	行	電子	勝	行	北京	思				任务		CJ/JL-4.
海幸が	备注	仪器校准情况	检测分析人员	明/密码标准样合格率(%)	加标回收合格率(%)	合格率(%)	測定率(%)	测定对数	合格泰(%)	测定率(%)	测定对数	样品个数	18 54 58 H	检测项目	任务名称: 孟州市光宇皮业有限公司土壤和地下水自行检测		CJ/JL-4.2-2-03-C/0-2021
校核:安北為	铝、总格、乙 结果合格。		李参琏		100	100	33, 3	1	100	33. 3	1	ಟ	击		2业有限公司		
花花	苯、二甲苯分别		赵利红		100	100	33. 3	1	100	33. 3	1	ts	总路		上壤和地下水F	检测分	
===	分析 33.3%明報		程		100	100	33, 3	1	100	33. 3	-	3	米乙		自行检测	计析质量控	
市核: 346	乙苯、二甲苯分别分析 33.3%明码和密码平行样和一加标回收实验;铝、乙苯、二甲苯分别		程肖筱		100	100	33. 3	1	100	33, 3	-	3	二甲苯	地下水	编号:CJ2023WT0485	检测分析质量控制结果统计表	
2023年 6 月 30 日	、乙苯、二甲苯分别做一全程序空白。														共10页 第10页		

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

率允许范围 (%) 率测定结果 (%) 率允许范围 (%)	六价铬 苯胺 70-130 47-119 102/92 56.0 合格 合格		(字皮业有限 相基苯 47-119 62.0 合格	1,1,1-三氟 1,1,1-三氟 乙烷 80-120 114	11地下水自 * * * * * * * * * * * * * * * * * *	行检测(三氧乙烯 80-120 110 合格	区部 200 年	盃州市光字皮业有限公司土壤和地下水自行检测(土壤部分) 2-氯酚 硝基苯 1.1.1-三氟 来 三氟乙烯 甲苯 47-119 80-120 80-120 80-120 80-120 62.0 62.0 114 104 110 108 合格 合格 合格 合格 合格 合格 合格	U 土壤部分》 Z/M 甲苯 1,1,2-三氟 Z/M - - 20 80-120 80-120 0 108 120 6 合格 合格
率允许范围 (%) 率測定结果 (%) 率允许范围 (%)	410	※ 画	53	1,2,3 三寅	1,4	,4二類米	-	1,2二氨米	1.2二氨米 氨乙烯
率測定结果 (%) 率允许范围 (%) 率測定结果 (%)	80-120 80-120	120 80-120	80-120	80-120	80-120	20	20 80-120		80-120
率允许范围(%)率测定结果(%)	112 112 合格 合格	2 110	08 格	80.0	96.0	交 O	0 88 0 茶		今 88 存 0
率允许范围(%)率測定结果(%)	麿 苯井(a)芘	(a)芘 苯并(b)茨	苯并(k)炭 磨	茚井 (1,2,3-c,d) 花	11	苯并(a,h) 膨	杆(a,h) 1,1-二羰乙 衡 络	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) 1,1-二製乙 二氟甲烷 反-
率測定结果(%)	40-150 40-150	150 40-150	40-150	40-150	40.	40-150	150 70-130		70-130
	48.0 82.0	0 78.0	106.0	114.0	10	102.0	2.0 115		115
如米刊即 合物	合格 合格	帝 合格	合格	合格	nb l	合格	格合格		合格
明码标准样项目名称	原编码	发放编码	码	保证值	苗			检测结果	检测结果 结果判断
部 GB	GBW07446	GBW07446		17. 4mg/kg±6, 5mg/kg	±6,5	mg/kg			17. 4mg/kg
3种 GBW (GBW (E) 070011	1 GBW (E) 070011		88.8mg/kg±6.5mg/kg	£6. 8	ing/kg		mg/kg 89. 2mg/kg	89. 2mg/kg
表 GBW(CBW (E) 070011	1 GBW (E) 070011		0. 19mg/kg±0.06mg/kg	0,0	6mg/kg		6mg/kg 0.18mg/kg	

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

任务名称分析项目	原-1,2-二寅	館	孟州市光 四篇化學	宇皮业有	孟州市光宇皮业有限公司土壤和地下水自行检测(土壤部分)四氢化源 1,2,二氧 、一量五烷	印地下水自行	- 松遡 (土壌)	(選 (土壌部分) 1,1,1,2-四氟 1,1,2,2-四衰	1
(*) 阻阱指令条件回溯时		70.130		乙烷	and the same	17 18 17 19	乙烷	乙烷	
加标回收率允许范围(%)	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130
加标回收率测定结果(%)	108	102	116	82.5	118	124	98	99.5	
结果判断	合格	合格	哈格	心格	0 格	心器	中部	中华	中
分析项目					200			1	1.
加标回收率允许范围(%)									
加标回收率测定结果(%)									
结果判断									
明码标准样项目名称	原编码	胆	发放编码	題	保证值	E值	检测结果	结果	
绚	GBW07446	46	GBW07446	146	12. 6mg/kg±0. 6mg/kg	±0.6mg/kg	12. 0mg/kg	8/kg	
镍	GBW07446	46	GBW07446	46	9. 6mg/kg±0. 6mg/kg	:0.6mg/kg	9. 7mg/kg	₹/kg	
密码标准样项目名称	原编码	Jri	发放编码	码	保证值	E値	检测结果	结果	
盡	GBW07446	46	ZK-2023-39	3-39	0.058ng/kg±0.011ng/kg	±0.011mg/kg	0.052mg/kg	ng/kg	
斯表· 冰水水	を発光がある		事故: 必会承		日間につ	y # 5cc	6 д ≥ о В	91	~

河南模数检验技术有限公司制

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

任务名称	1	à	孟州市光宇皮业有限公司土壤和地下水自行检测(地下水部分)	皮业有限	公司土壤和	地下水白衫	丁检测 (地	下水部分)		- 1
分析项目	華	癌	台	搬	描	*	三氟甲烷	四氯化碳	排	
加标回收率允许范围(%)	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130	
加标回收率测定结果(%)	99/103	75/78	94/98	84/87	116/122	115	93	113	113	
结果判断	合格	合格	合格	合格	合格	小莽	合格	- 公共	\$ t	
日即州位	7 #	- H 特	T.E. I I. Ado		1	-	1 11	11.11	111.64	
2 2 2 1	- April	1774	6474.38							
加标回收率允许范围(%)	70-130	70-130	60-120							
加标回收率测定结果(%)	113	113	70							
结果判断	合格	合格	合格							
密码标准样项目名称	原編码	19	发放编码		保证值	回		检测结果	结果判断	
筑剣	2005118		ZK-2023-36	0. 341	0.341mg/L(k=2 0.019mg/L)	0.019mg/		0.346mg/L	+	合格
硫酸盐	201935		ZK-2023-37	19.	19.9mg/L(k=2	1.0mg/L)		19.6mg/L		合格
展	21041137	- 20	ZK-2023-38	0, 571 1	0.571 µg/L (k=2	0.046 µ g/L)		0.54 µ g/L		合格
川表: 244.5	4 7 7 4 4	-		-						

115

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

仕为名称			孟州市州	孟州市光宇皮业有限公司土壤和地下水自行检测(土壤部分)	司土壤和地下/	K自行检测(土	場部分)		
分析项目	#	洪	部	遊	魯	蹇	pH	大价格	四雙名廠
样品原编号					20230615GY-TR2				
密码平行样编号				202	20230615GY-TR3	3			
允许偏差	×15%	≪35%	≤30%	≤20%	≤20%	≤20%	di=0.3	≤20%	≤50%
结果偏差	1.0%	1.3%	4.2%	5.5%	2. 3%	4.4%	di=0.01	未检出	×
结果判断	合格	哈	合格	合格	哈格	合格	中部	\	\
分析项目	氣仿	實甲烷	1,1-二氯乙烷	1,2-二氧乙烷	1,1-二氯乙烯	原-1,2-二氟乙	反-1.2	二無甲烷	1,2-二氟丙烷
样品原编号					20230615GY-TR2		100		
密码平行样编号					20230615GY-TR3	to			
允许偏差	≤50%	≤50%	≤50%	≤50%	≤50%	≤50%	≤50%	≤50%	≤50%
结果偏差	未检出	未检出	未检出	米松出	未检出	未检出	未放出	米格出	未松出
结果判断	1	1	1	/	/	/	_	\	,
分析项目	1,1,1,2-四氟乙 烷 烷 烷	1,1,2,2-四氯乙 烷	四氯乙烯	1,1,1-三氟乙	1,1,2-三氯乙 烷	三氯乙烯	1,2,3-三歲丙	製乙落	*
样品原编号					20230615GY-TR2	10			
密码平行样编号					20230615GY-TR3	ω			
允许偏差	≤50%	≤50%	≤50%	≤25%	≤25%	≤25%	≤25%	≤25%	A 25%
结果偏差	未检出	未检出	未松出	未检出	未检出	未检出	未發出	未检出	未检出
结果判断	/	/	/	/	1		\	~	~
1世: 游车林	校核:光线为		申核: 13年光	日期:	事 %のく	6 月 30	П	力態	页共9页

CJ/JL-4.2-2-02-C/0-2021

允许偏差 结果偏差 分析项目 结果判断 允许偏差 分析項目 任务名称 密码平行样编号 密码平行样编号 样品原编号 等品源编号 未检出 <40% ≤25% 推劈 海洲 1,2-二氟米 2-氣形 未检出 ≤40% ≤25% 1,4二氧米 孟州市光宇皮业有限公司土壤和地下水自行检测(土壤部分) 苯井(a)蒽 米农田 ≤30% ≤25% 样品解码表 苯并(a)芘 苯并(b)炭蒽 未检出 ≤30% ≤ 25% 茶乙 20230615GY-TR2 20230615GY-TR2 20230615GY-TR3 20230615GY-TR3 未检出 ≤25% ≤30% 苯并(k)荧蒽 未检出 ≤25% 甲苯 间二甲苯+ 对二甲苯 未检出 ≤25% 諈 编号:CI2023WT0485 二苯井(a,h)惠 邻二甲苯 米松出 ≤25% 米松出 硝基苯 ≤40%

塩素: 添な

校核: 光色花

审核: 冯彻亮

日期:

70%年

6

Ħ

30 ш

꽶 4

页共 9

日

河南晨纸检验技术有限公司制

结果偏差 允许偏差

米松出

米数田

≤30%

≤30%

密码平行样编号 样品原编号 分析项目 结果判断 结果偏差

茚井(1,2,3-c,d)芘

淮

20230615GY-TR2

20230615GY-TR3

未检出

未检出

米松出

未检出

未检出

未检出

未检出

未检出

≤30%

≤30%

≤30%

结果判断

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析项目	结果判断	结果偏差	允许偏差	密码半行秤編号	中面点端写		分析項目	结果判断	结果偏差	允许偏差	密料十行种關方	T and the second	推品原鑑号	分析項目	任务名称
A STATE OF THE PARTY OF THE PAR		未检出	≤30%			茚井(1,2,3-c,d)能	/	未检出	≤40%				米要		未检出	≤25%				資米	
A180 (1-1-1-1-1	_	未检出	≤30%			淋	-	未检出	2/40%	V 100			2-實影	/	未松出	102/1	200			1,2-二寅米	
A Lake I							-	未報出	10000	7/08.>			苯井(a)蒽	1	田瀬米	+ 4A-111	120 ×			1,4-二氮米	ARTHUR JULY DE
口語		l	+			4	,	3K9K00	+ 5.5	< 30%	20	20	苯井(a)芘	-	WW.	+ *	× 25%	20	20	2米	1000000
日とい				202-2001-001-00-02-02-02-02-02-02-02-02-02-02-02-02-	Obococi SCV_TE	anggog15CV_TR15		- mm	+ *	≤30%	20230615GY-TR16	20230615GY-TR15	苯井(a)芘 苯并(b)灾愿		, man se	仕事を	≤ 25%	20230615GY-TR16	20230615GY-TR15	苯乙烯	
6 H 40				100	I.	, in)	サなま	≤30%	6	5	本升(K)灭患		/	去粉出	≤25%	gs.	0,	平井	图/III / III
	1							-	未检出	≤30%			NH.	***		米格田	≤25%			对二甲苯	国二甲米+
/ ck	強ノ							,	未養出	≤30%			- de // faire	一件井/oh/辦	-	未松出	≤25%			- T	201日報
1	計 井 9														_	未检出	≤40%			***************************************	米売品

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

1	群	游	允	氏	幸	14	100	野	90	暘	華	*	書	100°	方	瞬	茶	*	Ħ
	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析项目	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析项目	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析项目	任务名称
	命格	1.4%	≤10%			溶解性息關体	,	未检出	≤20%			氧化物	合格	0	<15%			鉄	
	/	未检出	≤20%			阴离子合成洗涤剂	合格	2. 3%	≪10%			後名卷	合格	1.9%	≤20%			畲	法
	1	米松出	≤20%			挥发酚	合格	0, 4%	≤10%			製飯	合格	0.3%	≤20%			搬	H市光宇皮d
	,	未检出	≪15%	20230	20230	亚硝酸盐氯	合語	4.7%	≪10%	20230	20230	製化物	合格	7.2%	€20%	2023	2023	幸	孟州市光宇皮业有限公司土壤和地下水自行检测
	合格	1.8%	≪10%	20230615GY-DX2	20230615GY-DX1	耐酸盐氮	合格	0.6%	≪8%	20230615GY-DX2	20230615GY-DXI	总硬度	1	未检出	≤30%	20230615GY-DX2	20230615GY-DX1	兼	和地下水自行
	中	0	≤10%			なの	合格	0	≪8%			磐	1	0.5%	≤20%			事	松瀬 (地下
,	,	米魯田	≤20%			商	合格	2.4%	≪5%			硫酸盐	_	0	≤20%			쟲	(地下水部分)
							合格	0	≤30%			流元物	/	未检出	≤20%			趣	
							合格	1.0%	≤20%			部部	合格	5, 3%	≤20%			告	

河南晨橄粒验技术有限公司制

CJ/JL-4.2-2-02-C/0-2021

样品解码表

编号:CJ2023WT0485

項表: 猪臭あ	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析項目	结果判断	结果偏差	允许備差	密码平行样编号	样品原编号	分析项目	结果判断	结果偏差	允许偏差	密码平行样编号	样品原编号	分析項目	任务名称
校板: 张明省													/	未检出	≤30%			三寅甲烷	
审核: /5///													,	米松田	≤30%			四氟化碳	孟)
200													/	未检出	≤30%			*	市光宇皮生
日期: 70% 年													,	未检出	≤30%	2023	2023	中未	村限公司士
505年6													1	未检出	≤30%	20230615GY-DX2	20230615GY-DX1	乙米	赛和地下水自
月 30 日													`	未检出	≪30%			米	孟州市光宇皮业有限公司土壤和地下水自行检测(地下水部分)
第つり																			(分)
页 共 9 页																			

河南晨颉检验技术有限公司

检测报告

报告编号: CJ2023WT0485

项目名称: 孟州市光宇皮业有限公司委托检测

委托单位: 孟州市光宇皮业有限公司

报告日期: ______2023年6月30日

检测报告说明

- 1、本报告无公司检验检测专用章、骑缝章及 🚾 章无效。
- 2、报告内容需填写齐全,无审核签发者签字无效。
- 3、由委托单位自行采集的样品,仅对送检样品检测数据负责,不对样品来源负责;由本公司采集样品,检测结果仅对检测期间样品负责;无法复现的样品,不受理申诉。
- 4、本报告未经同意不得用于广告宣传。
- 5、复制本报告中的部分内容无效。

河南晨颉检验技术有限公司

地 址: 焦作市示范区玉溪路 1129 号总部新城 (南区) 52 号楼

邮编: 454000

电话: 0391-2630100

传真: 0391-2630100

1 概述

受孟州市光宇皮业有限公司委托,河南晨颉检验技术有限公司对该公 司指定点位的地下水、土壤进行了采样检测。

被测单位地址:河南省孟州市南庄镇毛皮产业园内

联系人: 杨杰

联系电话: 15993712224

采样时间: 2023. 6. 15 检测时间: 2023. 6. 15-2023. 6. 29

2 检测内容

2.1 地下水检测内容见表 2-1

表 2-1

地下水检测内容一览表

检测类别	检测点位	点位坐标	检测因子	检测频次
	D01 项目上 游水井	E: 112.853031 N: 34.910248	pH、色度、臭和味、 (浑) 浊度、总硬度、 溶解性总固体、硫酸盐、氯化物、铁、锰、	
地下水	D02 厂区水 井	E: 112.849752 N: 34.898400	钢、锌、挥发酚、阴离子合成洗涤剂、耗氧 量、氨氮、硫化物、钠、亚硝酸盐、硝酸盐	1次
	D03 項目下 游水井	E: 112, 850695 N: 34, 898315	領、氰化物、氟化物、碘化物、汞、砷、硒、 镉、铅、三氯甲烷、四氯化碳、苯、甲苯、 铝、乙苯、二甲苯、总磷、总铬	10000

2.2 土壤检测内容见表 2-2

:4	ž	¢	ń		0
28	~		ĸ.	-	9

土壤检测内容一览表

1000		工程性的別別在	9540	
检测类别	检测点位	点位坐标	检测因子	检测频次
	T01 厂区外西北农田 (背景点)	E: 112.854358 N: 34.899729	pH值、砷、汞、镉、六价 铬、铜、铅、镍、四氯化	
	T02 废水总排口西侧	E: 112.853032 N: 34.910249	碳、氯仿、氯甲烷、1,1- 二氯乙烷、1,2-二氯乙烷、	
土壤	T03 污水处理系统西侧	E: 112.848195 N: 34.898957	1,1-二氯乙烯、順-1,2- 二氯乙烯、反-1,2-二氯乙	
Tolk	T04 危废临时堆场	E: 112.854236 N: 34.897529	烯、二氯甲烷、1,2-二氯 丙烷、1,1,1,2-四氯乙烷、	1次
	T05 含铬废水处理系统北侧	E: 112.855145 N: 34.899776	1,1,2,2-四氯乙烷、四氯 乙烯、1,1,1-三氯乙烷、	
	T06 污水处理系统东北侧	E: 112.848195 N: 34.899385	1,1,2-三氯乙烷、三氯乙 烯、1,2,3-三氯丙烷、氯	

T07 前处理车间(附二号车 间)东侧	E: 112, 850873 N: 34, 899385	乙烯、苯、氯苯、1,2-二 氯苯、1,4-二氯苯、乙苯、
T08 前处理车间西侧	E: 112.855115 N: 34.898976	苯乙烯、甲苯、间二甲苯+ 对二甲苯、邻二甲苯、硝
T09 染色干洗车间西侧	E: 112.855175 N: 34.899123	基苯、苯胺、2-氯酚、苯 并(a)煎、苯并(a)芘、苯
T10 化料仓库东侧	E: 112.850868 N: 34.900522	井(b) 荧蔥、苯并(k) 荧蔥、 蘸、二苯并(a, h) 蔥、茚并
T11 染色浸酸鞣制车间东侧	E: 112.850846 N: 34.900489	(1, 2, 3-c, d) 芘、萘
T12 涂饰烫剪车间东侧	E: 112.851431 N: 34.901232	
T13 废水调蓄池西侧	E: 112.854148 N: 34.897745	
T14 厌氧罐东侧	E: 112.855006 N: 34.897938	

3 分析方法及使用仪器

3.1 地下水检测分析方法及使用仪器见表 3-1

表 3-1	地下水检测分析	f方法及使用仪器-	一览表	
检测项目	检测方法	方法来源	使用仪器及编号	检出限
pH (无量纲)	水质 pH 值的测定 电极法	НЈ 1147-2020	DZB-712F 便携式多 参数分析仪 (CJY-03-2020)	1
臭和味	生活饮用水标准检验方法 感 官性状和物理指标(3.1 嗅气 和尝味法)	GB/T 5750. 4-2006	7	/
(澤) 浊度	便携式浊度计法	《木和废水监测 分析方法》(第四 版)第三篇第一 章 第四节 国家 环境保护总局 (2002年)	WJZ-2B 浊度计 (BSLY-29-2019)	1
耗氧量	生活饮用水标准检验方法 有 机物综合指标 (1.1 耗氧量 酸性高锰酸钾滴定法)	GB/T 5750. 7-2006	7	0.05mg/L
溶解性 总固体	生活饮用水标准检验方法 感官性状和物理指标	GB/T 5750. 4-2006	AUW220D 电子天平 (BSLY-05-2019)	1

	(8.1 称量法)			
氟化物	水质 氟化物的测定 离子选择电极法	GB 7484-1987	PXS-270 离子计 (BSLY-03-2019)	0.05mg/l
铁	水质 铁、锰的测定 火焰原子 吸收分光光度法	GB 11911-1989	TAC ODDARY BIZIN	0, 03mg/1
总铬	水质 铬的测定 火焰原子吸收 分光光度法	НЈ 757-2015	TAS-990AFG 原子吸 收分光光度计	0.03mg/t
钠	水质 钾和钠的测定 火焰原子 吸收分光光度法	GB 11904-1989	(HLY-16-2019)	0.01mg/I
汞	水质 汞、砷、硒、铋和锑的测 定 原子荧光法	НЈ 694-2014	AFS-8230 原子荧光 光度计 (HLY-15-2019)	0, 04 μ g/L
碘化物	水质 碘化物的测定 高浓度碘 化物容量法	GB/T 5750. 5-2006	1	0.025mg/ L
色度(度)	水质 色度的测定 (3 铂钴比色法)	GB 11903-1989	/	1
氨氮	水质 氨氮的测定 纳氏试剂分 光光度法	Н.Ј 535-2019		0.025mg/
挥发酚	水质 挥发酚的测定 4-氨基安 替比林分光光度法	HJ 503-2009		0.0003mg
阴离子合 成洗涤剂	水质 阴离子表面活性剂的测 定 亚甲蓝分光光度法	GB 7494-1987		0.05mg/L
亚硝酸 盐氮	水质 亚硝酸盐氮的测定 分光 光度法	GB 7493-1987		0.003mg/
总磷	水质 总磷的测定 钼酸铵分光 光度法	GB 11893-1989	T6 新世纪 紫外可见分光光度计	0.01mg/L
硝酸盐氮	水质 硝酸盐氮的测定 酚二磺 酸分光光度法	GB 7480-1987	(BSLY-01-2019)	0.02mg/L
硫化物	水质 硫化物的测定 亚甲基蓝 分光光度法	HJ 1226-2021	7.	0,003mg/ L
氰化物	生活饮用水标准检验方法 无 机非金属指标 (4.1 异烟酸- 吡唑酮分光光度法)	GB/T 5750, 5-2006		0.004mg/ L
硫酸盐	水质 硫酸盐的测定 铬酸钡分 光光度法(试行)	HJ/T 342-2007		1.0mg/L
总硬度	水质 钙和镁总量的测定 EDTA 滴定法	GB 7477-1987	1	0.05mmoL /L
氧化物	水质 氯化物的测定 硝酸银滴定法	GB 11896-1989	/	10mg/L
四氯化碳	水质 挥发性有机物的测定 顶	Н Ј 810-2016	436-GC 气相色谱质谱	0.8 µ g/L

三氟甲烷	空/气相色谱-质谱法		联用仪 (HLY-31-2019)	1.1 µ g/L
苯			1101 01 20107	0.8 μg/L
甲苯				1. 0 μ g/L
乙苯				1. 0 μ g/L
二甲苯				0.8 μ g/L
铝				1.15 µ g/L
铜				0. 08 μ g/L
锋				0.67 μ g/L
釥	水质 65 种元素的测定 电感耦		SUPEC7000 电感耦合	0.12 μ g/L
倾	合等离子体质谱法	HJ 700-2014	等离子体质谱仪	0.41 µ g/L
8/L				0.09 μ g/L
镉				g/L g/L
420				0. 12 μ g/L

3.2 土壤检测分析方法及使用仪器见表 3-2

表 3-2	土壤检测分析方法及	&使用仪器一览	表	
检测因子	检测方法	方法来源	使用仪器及编号	检出版
pH 值(无量纲)	土壤 pH值的测定 电位法	HJ 962-2018	PHS-3C pH i† (HLY-37-2020)	/
六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分 光光度法	HJ 1082-2019	TAS-990AFG 原子 吸收分光光度计 (HLY-16-2019)	0.5 mg/kg
汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子	HJ 680-2013	AFS-8230 原子 荧光光度计	0.002 mg/kg
种	荧光法	nj 000-2013	死元及17 (HLY-15-2019)	0.01 mg/kg

铜	土壤和沉积物 铜、锌、铅、			lmg/kg
铅	镍、铬的测定 火焰原子吸收 分光光度法	HJ 491-2019	TAS-990AFG 原子	10mg/kg
镍	分元元度法		吸收分光光度计 (HLY-16-2019)	3mg/kg
锅	土壤质量 铅、镉的测定 石墨 炉原子吸收分光光度法	GB/T 17141-1997		0.01 mg/kg
四氯化碳			- +:	2 μ g/kg
氯仿				2 μ g/kg
氯甲烷				3 μ g/kg
1,1-二氯乙烷				2 μ g/kg
1,2-二氯乙烷				3 μg/kg
1,1-二氯乙烯	- 土壤和沉积物 挥发性卤代烃		100 00 50 10 40 40	2 μ g/kg
顺-1,2-二氯乙烯	的瀕定 项空/气相色谱-质谱	НЈ 736-2015	436-GC 气相色谱 质谱联用仪	3 μ g/kg
反-1,2-二氧乙烯	法		(HLY-31-2019)	3 μ g/kg
二氯甲烷				3μg/kg
1,2-二氯丙烷				2 μ g/kg
1,1,1,2-四氯乙烷				3 μ g/kg
1, 1, 2, 2-四氯乙烷				3 μ g/kg
四氯乙烯				2 μ g/kg
1,1,1-三氯乙烷				1.1 μg/kg
1,1,2-三氟乙烷				1. 4 μg/kg
三氯乙烯	土壤和沉积物 挥发性有机物 的测定 顶空/气相色谱-质谱 法	HJ 642-2013	436-GC 气相色谱 - 质谱联用仪	0, 9 μg/kg
1,2,3-三氯丙烷	42.		(HLY-31-2019)	1.0 μg/kg
氯乙烯				1.5 μg/kg

苯				1.6
2000000				μg/kg 1.1
氯苯				μg/kg
1,2-二氯苯			1	1.0
1,2"二级本				μg/kg
1,4-二氯苯				1.2
A1.5. — #96.00				μg/kg
乙苯				1.2
				µg/kg
苯乙烯				1.6
05000				μg/kg 2.0
甲苯				μg/kg
for the made	1			3, 6
间/对二甲苯				μg/kg
邻二甲苯				1, 3
W-174				μg/kg
硝基苯				0.09
202000	I have so well in the second		436-GC 气相色谱	mg/kg
苯胺	土壤和沉积物 半挥发性有机 物的瀕定 气相色谱-质谱法	HJ 834-2017	质谱联用仪	0.06
	初的概定 "相巴肩" 與暗法	Competition of the Company of the Co	(HLY-31-2019)	mg/kg
2-氯酚				0.06 mg/kg
dr.M. / A ste				0, 12
苯并(a) 蒽				mg/kg
苯并(a) 芘				0.17
-4-21 (0) EC				mg/kg
苯并(b) 炭葱				0.17
COLUMN DESCRIPTION				mg/kg
苯并(k) 荧蒽	上接到次和極 夕江光級66期		436-GC 气相色谱	0.11
10.000	土壤和沉积物 多环芳烃的测定 气相色谱-质谱法	HJ 805-2016	质谱联用仪	mg/kg 0.14
甝	AC ALL COMM DESIGN		(HLY-31-2019)	mg/kg
二苯并(a, h) 蒽				0.13
				mg/kg
節并(1, 2, 3-c, d) 芘				0.13
				mg/kg
萘				0.09
				mg/kg

4 检测分析结果

4.1 地下水检测结果见表 4-1

表 4-1 地下水检测结果一览表

		MANUAL SUITE	
采样点位	D01 项目上游水井	D02 厂区水井	D03 项目下游水井
采样点位 坐标	E: 112.853031 N: 34.910248	E: 112.849752 N: 34.898400	E: 112, 850695 N: 34, 898315
采样日期	2023, 6, 15 (9:24)	2023, 6, 15 (10:29)	2023, 6, 15 (9;49)
样品描述	透明、无色、无异味	透明、无色、无异味	透明、无色、无异味
pH(无量纲)	7, 7	7.6	7.5
(浑)浊度 (NTU)	0. 210	0, 201	0. 292
臭和味 (等級/强度)	0/无	0/无	0/无
耗氧量 (mg/L)	2.06	2. 85	1.67
溶解性总固体 (mg/L)	583	567	544
硫化物 (mg/L)	0.004	0.004	0, 004
氟化物 (mg/L)	0.45	0.44	0, 56
氰化物 (mg/L)	未检出	未检出	未检出
铜 (μg/L)	7. 88	2. 64	14. 5
锋 (μg/L)	8. 12	7.40	28. 5
鉛 (µg/L)	0.38	0. 32	0.40
镉 (μg/L)	未检出	未检出	未检出
铁 (mg/L)	0.09	0, 11	0.15
锰 (µg/L)	3, 46	88. 1	96. 8
钠 (mg/L)	32. 5	31. 2	91, 5

汞 (μg/L)	未检出	未检出	未检出
δΦ (μg/L)	1, 22	0. 92	0. 97
## (µg/],)	未检出	未检出	未检出
硒 (μg/L)	1. 09	1, 42	1, 56
色度(度)	5	5	5
氨氯 (mg/L)	0.307	0. 344	0. 333
挥发酚 (mg/L)	未檢出	未检出	未检出
阴离子合成洗涤剂 (mg/L)	未检出	未检出	未检出
亚硝酸盐氮(mg/L)	未检出	未检出	未檢出
硝酸盐氯 (ng/L)	2. 27	5. 75	0.79
硫酸盐 (mg/L)	152	218	127
总硬度(mg/L)	256	410	369
氯化物 (mg/L)	32	183	64
碘化物 (mg/L)	未检出	未检出	未检出
四氧化碳 (µg/L)	未检出	未检出	未检出
三氯甲烷 (µ g/L)	未检出	未检出	未检出
苯 (μg/L)	未检出	未检出	未检出
甲苯 (μ g/L)	未检出	未检出	未检出
乙苯 (μg/L)	未检出	未检出	未检出
二甲苯 (μ g/L)	未检出	未检出	未检出
总磷 (mg/L)	0. 05	0, 04	0.03
总铬 (mg/L)	3. 23	3. 27	3, 24

报告编号: CJ2023WT0485

4.2 土壤检测结果见表 4-2、4-3、4-4

女 4-7			土壤检测结果	一覧表	单位:10g	单位:mg/kg(pH 除外)
采样点位	-1	T01 厂区外西北农田 (背景点)	702 度水总排口西侧	T03 行水处理系统 西侧	T04 危废临时堆场	T05 含铬废水处理系统 北侧
采样点位坐标	換	E: 112.854358 N: 34.899729	E: 112.853032 N: 34.910249	E: 112.848195 N: 34.898957	E: 112.854236 N: 34.897529	E: 112,855145 N: 34,899776
采粹时间	-	2023. 6. 15	2023. 6, 15	2023. 6. 15	2023, 6, 15	2023, 6, 15
pH 值 (无量纲)	0-50cm	8.01	7.68	7.40	7.67	7.87
100	0-50сш	24	28	18	24	25
福	0-50сш	80	22	23	18	27
株	0-50сш	18	23	14	24	21
響	0-50сш	0.24	0.36	0.16	0.17	0.18
六价格	0-50сш	米陸出	未检出	未检出	未檢出	未检出
茶	0-50сш	0.123	0.040	0.510	0.117	0.212
盘	0-50сш	7.40	10.5	7.04	7.22	8.83
四氯化碳	0-50сш	未检出	未检出	未检出	未检出	田衛米
氣仿	0-50сш	未检出	未检出	未發出	未检出	半春田

报告编号, CJ2023WT0485

第 10 页 共 21 页

1,1-二氟乙烷 0-50cm 1,2-二氟乙烷 0-50cm 1,1-二氟乙烯 0-50cm 阿-1,2-二氟乙 0-50cm 溶 及-1,2-二氟乙 0-50cm 格					
	未检出	未检出	未检出	未检出	未验出
	未检出	未检田	未检出	未检出	未检出
	未检出	未检出	未检出	未检出	未检出
	未检出	未检出	未检出	未检出	未检出
	未检出	未检出	未检出	未检出	未检出
	未检出	未检出	未检出	未检出	未检出
1,2-二氟丙烷 0-50cm	未检出	米检出	未檢出	未检出	未检出
1,1,1,2-四氟乙 0-50cm	未检出	未检出	未检出	米格出	米格出
1,1,2,2-四氯乙 0-50cm 烷	未检出	未检出	未检出	未發出	未检出
四氯乙烯 0-50cm	未检出	未检出	未验出	未检出	未检出
1,1,1-三氯乙烷 0-50cm	未检出	未检出	未检出	未检出	未检出
1,1,2-三氯乙烷 0-50cm	未检出	未检出	未检出	未检出	未检出
三氟乙烯 0-50cm	未检出	未检出	米检出	未修出	米魯出
1, 2, 3-三氯丙烷 0-50cm	未检出	未检出	未检出	未检出	未检出

河南是旗检验技术有限公司制

河南晨振检验技术有限公司制

第乙落	0-20сш	未检出	未检出	未检出	未检出	未检出
*	0-50сш	未检出	未检出	未检出	未检出	未检出
網茶	0-50сш	未检出	未检出	未检出	未校出	未检出
1,2-二氯苯	0-50сш	未检出	未检出	未检出	未检出	未检出
1,4-二氯苯	0-50сш	未检出	未检出	未检出	未检出	未检出
2条	0-20сш	未检出	未检出	未检出	未检出	未检出
苯乙烯	0-50сш	未检出	未检出	未检出	未检出	未检出
本	0-50сш	未检出	未检出	未检出	未检出	米检出
间/对二甲苯	0-50cm	未检出	未检出	未检出	未检出	未检出
8年二年 ※	0-50сш	未检出	未检出	未检出	未检出	未检出
硝基苯	0-50сш	未检出	未检出	未检出	未检出	未检出
級	0-50cm	未检出	米检出	未發出	未检出	未检出
2-氣酚	0-50cm	未检出	未检出	米格出	未检出	未检出
苯并(a) 蒽	0-50cm	未检出	未輸出	未检出	未检出	未检出
苯并(a) 芘	0-20сш	未检出	米魯田	未检出	未检出	米检出

第11页共21页

报告编号; CJ2023WT0485

第12 页共21 页

h	1		
а	r		
-		۰	
þ		u	
		ŕ	
ş	į	۰	
P	,		
e	1	j	
5	•	٩	
ŗ	•	3	
١,		ł	
		7	۰
1			
ũ			
9	9		
ŝ			
	į		
7	۲	7	

業件(5) 英語 7-50cm 未检出 上標校測結果—览表 申述品 中经出 未检出 上級出 中区 上級出 中区	苯并(b) 荧蒽	0-50cm	未检出	未检出	未存出	未检出	米松田
0~50cm 未检出 申促 并检出 申促 申 申 申 申 申 申 申 申 <th< td=""><td>苯并(k) 荧蕙</td><td>0-50cm</td><td>未检出</td><td>未检出</td><td>未检出</td><td>未检出</td><td>未检出</td></th<>	苯并(k) 荧蕙	0-50cm	未检出	未检出	未检出	未检出	未检出
0~50cm 未检出 中枢 中枢 <td>飌</td> <td>0-50cm</td> <td>未检出</td> <td>未检出</td> <td>米格出</td> <td>未检出</td> <td>未检出</td>	飌	0-50cm	未检出	未检出	米格出	未检出	未检出
0-50cm 未检出 中位:mg/kg 位-50cm TO6 污水处重系统 TO7 前处理车间(附二 TO8 前处理车间西侧 109 染色干洗车间西侧 100 杂色干洗车间西侧 N: 34. 899385 N: 34. 900522 N: 34. 898976 N: 34. 8991.33 N: 34. 8991.33 N: 34. 8991.33 N: 34. 8991.33 R: 112. 8591.75 N: 34. 8991.33 R: 2023. 6. 15 N: 34. 8991.33 N: 34. 8991.33 <t< td=""><td>素井(a, h) 蔥</td><td>0-50сш</td><td>未检出</td><td>未检出</td><td>未检出</td><td>米魯田</td><td>未检出</td></t<>	素井(a, h) 蔥	0-50сш	未检出	未检出	未检出	米魯田	未检出
業 0~50cm 未检出 未检出 未检出 未检出 中位:mg/kg 4-3 土壤检测结果—览表 采样点位 不样点位 工壤检测结果—览表 土壤检测结果—览表 采样点位坐标 医: 112.855023 E: 112.855023 E: 112.855023 E: 112.855175 N: 34.899385 N: 34.899386 N: 34.899876	静井, 2, 3-c, d) 茂	0-50сш	未检出	未检出	未检出	未检出	未检出
土壤检測结果-览表 土壤检測结果-览表 采样点位 本北側 与车间)系侧	紫	0-50сш	未检出	未检出	未检出	未检出	未检出
采样点位坐标 E: 112.855023 E: 112.855015 E: 112.855115 E: 112.855175 采样时 N: 34.899385 N: 34.900522 N: 34.89876 N: 34.899123 采样时 O-50cm 2023.6.15 2023.6.15 2023.6.15 2023.6.15 精 O-50cm 31 29 28 24 特 0-50cm 21 34 26 13 株 0-50cm 44 36 38 14	采样点作	7.	T06 污水处理系统 东北侧	707 前处理车间(附二号车间) 來側	108 前处理车间西侧	109 染色干洗车间西侧	T10 化料仓库东侧
采样时 二 2023.6.15 2023.6.15 2023.6.15 2023.6.15 2023.6.15 2023.6.15 2 (元量約) 0-50cm 8.34 8.21 8.53 8.25 8.25 朝 0-50cm 31 29 28 24 報 0-50cm 21 34 26 13 (株) 0-50cm 44 36 38 14	采祥点位坐	· 操	E, 112, 855023 N, 34, 899385	E: 112.850873 N: 34.900522	E: 112.855115 N: 34.898976	E: 112, 855175 N: 34, 899123	E: 112.850868 N: 34.900522
(元量約) 0~50cm 8.34 8.21 8.53 8.25 網 0~50cm 31 29 28 24 額 0~50cm 21 34 26 13 額 0~50cm 44 36 33 14	采样时信	-	2023, 6, 15	2023. 6. 15	2023. 6, 15	2023. 6. 15	2023. 6, 15
0-50cm 31 29 28 24 0-50cm 21 34 26 13 0-50cm 44 36 33 14	值(无量纲)	0-50cm	8.34	8.21	8, 53	8.25	7. 55
0-50cm 21 34 26 13 0-50cm 44 36 33 14	噩	0-50cm	31	29	28	24	30
0-50cm 44 36 33 14	华	0-50сш	21	34	26	13	35
	蒙	0-50cm	44	36	33	14	37

河南晨城检验技术有限公司制

第13 页共21 页

报告编号: CJ2023WT0485

0.28 0.30	未检出	0.266 0.232	8.89	未检出 未检出	未检出未检出	未检出 3.3	未检出 未检出	未检出	未检出	未检出	未检出 未检出	未检出	未检出 未检出	
0.13 0.24	未检出未检出	0. 191 0. 344	8.24 8.41	未检出未检出	未检出未检出	未检出 未检出	未检出未检出	未检出	未检出 未检出	未检出 未检出	未检出未检出	未检出 未检出	未检出 未检出	
0.20	未检出	0.124	7.00	未检出	未检出	未检出	未检出	未检出	未检出	未检出	未检出	未發出	未检出	
0-50cm	0-50сш	0-50cm	0-50cm	0-50сш	0-50сш	0-50cm	0-50cm	0-50сш	0-50cm	0-50сш	0-50сш	0-50сш	0-50cm	
魏	六价铬	枨	盘	四氮化碳	氯仿	氯甲烷	1,1-二氟乙烷	1,2-二氟乙烷	1,1-二氟乙烯	而-1,2-二寅乙	反-1,2-二氧乙 落	二萬甲烷	1,2-二歲因祭	1,1,1,2-四氯乙

河南晨鎮检验技术有限公司制

第 14 页 共 21 页 河南晨旗检验技术有限公司制 未检出 未被出 未检出 米格出 未检出 未检出 未检出 未检出 未检出 米检出 未检出 米松田 未检出 未检出 未检出 未检出 米松田 未检出 0-50сш 报告编号: CJ2023WT0485 0-50сш 0-50сш 0-50сш 0-50сш 0-50cm 0-50cm 0-50сш 0-50cm 0-50сш 0-50cm 0-50сш 0-50сш 0-50сш 0-50cm 1,1,2,2-四氯乙烷 1,1,1-三氟乙烷 1,1,2-三氟乙烷 1,2,3-三氯丙烷 间/对二甲苯 四氟乙烯 1,2-二氯苯 1,4-二氮茶 三氯乙烯 第乙落 ₩

河南晨颜检验技术有限公司制

第二甲案 一50cm 未检出 未检出							
0~50cm 未检出 未检出 未检出 未检出 0~50cm 未检出 未检出 未检出	操 田 1 婦	0-50cm	未检出	未發出	未检出	未检出	未检出
0~50cm 未检出 未检出 未检出 未检出	硝基苯	0-20сш	未检出	未检出	未检出	未检出	米检出
0~50cm 未检出 未检出 未检出 未检出	苯酸	0-50сш	未检出	未检出	未检出	未检出	未检出
0~50cm 未检出 未检出 未检出 未检出	2-氯酚	0-50сш	未检出	未检出	未检出	未检出	未检出
0~50cm 未检出 未检出 未检出 未检出 0~50cm 未检出 未检出 未检出 0~50cm 未检出 未检出 未检出	世井(a) 題	0-50cm	未检出	未检出	未检出	未检出	未检出
O-50cm 未检出 未检出 未检出 未检出 O-50cm 未检出 未检出 未检出	€井(a) 花	0-50сш	未检出	未检出	未检出	未检出	未检出
0-50cm 未检出 未检出 未检出 未检出 0-50cm 未检出 未检出 未检出	并(b) 荧蒽	0-50сш	未检出	未检出	未检出	未检出	未检出
0-50cm 未检出 未检出 未检出 0-50cm 未检出 未检出 未检出 0-50cm 未检出 未检出 未检出 0-50cm 未检出 未检出 未检出	并(k) 荧蒽	0-50cm	未检出	未检出	未检出	未發出	米检出
0~50cm 未检出 未检出 未检出 0~50cm 未检出 未检出 未检出 0~50cm 未检出 未检出 未检出	糎	0-50сш	未检出	未检出	未检出	未检出	未检出
0-50cm 未检出 未检出 未检出 0-50cm 未检出 未检出	≰井(a, h) 蔥	0-50сш	米格田	米魯出	未检出	米泰出	未检出
0-50cm 未检出 未检出 未检出	請并 2,3-c,d) 莊	0-50сш	未检出	未检出	未检出	米检出	未检出
	嶽	0-20сш	未检出	未检出	未验出	未检出	未检出

第 15 页 共 21 页

报告编号: CJ2023WT0485

河南晨城检验技术有限公司制

表 4-4			上集位的岩米 児女		中心:mg/kg(pn 际9万)
采样点位	5-1	711 染色浸酸鞣制车间东侧	712 涂饰烫剪车间来侧	713 废水调蓄池西侧	114 厌氣罐系刨
采样点位坐标	極	E: 112.850846 N: 34.900489	Et 112, 851431 N: 34,901232	E: 112, 854148 N: 34, 897745	E: 112.855006 N: 34.897938
采样时间		2023. 6. 15	2023. 6. 15	2023, 6, 15	2023. 6. 15
pH 值 (无量網)	0-50cm	7.95	7.94	7,44	8, 10
噩	0-50сш	30	31	26	29
器	0-50cm	24	35	25	10
聯	0-50сш	26	32	16	21
噩	0-50сш	0.24	0.24	0.26	0.13
六价格	0-50cm	未检出	未检出	米检出	未检出
承	0-20сп	0, 443	0.250	0.549	0, 253
曲	0-50сш	8.64	6.12	7.62	8.16
四氯化碳	0-50сш	未检出	未检出	未检出	未检出
氣份	0-50сш	未检出	未检出	未检出	未检出
戴甲烷	0-50сш	10.0	8.6	未检出	芸な米

报告编号: CJ2023WT0485

报告编号: C12023WT0485

第17 页 共 21 页

未检出 未物田 未检出 未检出 未检出 未检出 未检讯 未检出 未检田 未检出 未检出 未检出 未检出 未检出 未检出 未检田 未检出 未检出 未检出 未检出 未检出 未检出 未检出 米格出 未检出 未验出 未检出 未检出 未检出 未检田 0-50сш 0-50сш 0-50сш 0-50сш 0-50cm 0-50cm 0-50cm 0-50cm 0-50сш 0-50сш 0-50сш 1,1,2,2-四氟乙 烷 原-1,2-二氟乙 烯 反-1,2-二氟乙 1,1,1,2-四氯乙 1,1,1-三氟乙烷 1,1,2-三氯乙烷 1, 2, 3-三億丙烷 1,1-二氯乙烷 1,2-二氯乙烷 1,1-二氯乙烯 1,2-二氟丙烷 二萬甲烷 回氧乙烯 三氟乙烯 麗乙盛 载

河南晨额检验技术有限公司制

第 18 页 共 21 页 河南晨额检验技术有限公司制 未检出 未检出 未检出 未检出 未检出 未检出 未检出 米物出 未检出 未检出 未检出 未检出 未检出 未替用 未检出 未检出 未检出 未检出 未检压 未检出 未检出 未检出 未检出 未检出 未检出 米检出 未检出 未检出 未被田 未检出 报告编号, CJ2023WT0485 0-50сш 0-20сш 0-50cm 0-50cm 0-50сш 0-50cm 0-50сш 0-50сш 0-50сш 0-50cm 0-50сш 0-50cm 0-50сш 0-50cm 间/对二甲苯 苯并(b) 荧蒽 1,2-二氟苯 1,4-二氯苯 苯并(a) 拉 邻二甲苯 素井(a) 鄭 苯乙烯 硝基苯 2-氟酚 無米 米2 世 苯胺 茶

未检出	未检出	未检出	0.14	未检出		河南島海鈴絲特米有關小司袖
未检出	未检出	未检出	0.15	未检出		祖
未检出	米橙出	米格出	未检出	未检出		
未检出	未检出	未检出	未检出	未检出		
0-50сш	0-50сш	0-50сш	0-50сш	0-50cm		
老井(k) 荧蒽	緶	二苯并(a, h) 憲	苗井 (1,2,3~c,d)芘	摐		

5 检测质量控制

本次检测采样及样品分析均严格按照相关国家标准要求进行,实施全程序质量控制。具体质控要求如下:

- 5.1 检测分析方法采用国家颁布的标准(或推荐)分析方法,检测人员经过考核并持有合格证书。
- 5.2 所有检测仪器经计量部门检定合格并在有效期内。
- 5.3 检测数据严格实行三级审核。
- 5.4 检测期间,质量监督员现场监督检查检测质量并填写质量监督检查 表。
- 5.5 土壤: 砷、镉、六价铬、铜、铅、汞、镍、pH值分别采集 10%现场平行样。四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2-四氯乙烷、四氯乙烷、四氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烷、三氯乙烯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯分别采集 3 份平行样。
- 5.6 土壤: 砷、镉、六价铬、铜、铅、汞、镍、pH值分别分析 10%明码平 行样。砷、汞分别做 2 个全程空白; 挥发性有机物做一运输空白、一全程 序空白,挥发性卤代烃做一全程序空白。铅、砷、汞、铜、镍分别做一明 码标准样,镉做一密码标准样,挥发性有机物、半挥发性有机物、六价铬 分别做 5%加标回收实验。

河南晨撷检验技术有限公司制

5.7 地下水: 硫化物单独(定量)采样并加采10%的样品,三氯甲烷、四氯化碳、苯、甲苯、乙苯、二甲苯每个点位分别采集平行双样,其余因子分别采集10%现场平行样,pH现场检测并做一明码标准样,(浑)浊度现场检测。

5.8 地下水: 所有因子均分析 10%明码平行样。锰、铜、锌、砷、硒、铅、镉、铝、硫化物、三氯甲烷、四氯化碳、苯、甲苯、乙苯、二甲苯分别做一全程序空白。硫化物做一加标回收实验, 氨氮、硫酸盐、汞分别做一密码标准样。砷、硒、铅、镉、铝、汞、砷、三氯甲烷、四氯化碳、苯、甲苯、乙苯、二甲苯分别做一加标回收实验。。

6 检测人员

曹博 范金虎 程肖筱 张素红 赵利红 张娟 王扬帆 李梦琦 谢赛男

报告结束

河南晨颜检验技术有限公司制

检测报告

报告编号: KL2023A1201

项目名称:一般委托检测

委托单位:河南晨颉检测技术有限公司

样品类别: 地下水

河南省科龙环境工程有限公司 2023 年 06 月 21 日

KLEM-TF-901-2021

说明

- 一、本检测结果无本公司检验检测专用章、骑缝章及 CMA 章无效。
- 二、报告无编制人、审核人、批准人签字无效。
- 三、报告发生任何涂改后无效。

四、本报告未经同意不得以任何方式复制及广告宣传,经同意复制 的复印件,应由我公司加盖"检验检测专用章"确认。

五、由委托方自行采集的样品,本公司仅对送检样品检测数据负责, 不对样品来源负责,若委托方提供信息存在错误、偏离或与实际情况不 符,本公司不承担由此引起的责任,无法复现的样品,不受理申诉。

六、委托方对检测结果有异议,应在收到报告之日起七日内向本公司提出书面复检申请,逾期恕不受理。

河南省科龙环境工程有限公司

公司地址:济源市文昌中路 88号

邮 编: 459000

电 话: 15670820330

传 真: 0391-5575099

一、概述

受河南晨颉检测技术有限公司的委托, 我公司对孟州市光宇皮业 有限公司地下水进行检测分析。

二、检测内容

2.1地下水检测内容见表 2-1。

表 2-1 地下水检测内容

衣 2-1	NO 1 MAN WALLE A.	100000000000000000000000000000000000000
检测点位	检测因子	检测频次
D01 项目上游水井、D02 厂区水井、D03 项目下游 水井	六价铬、总大肠菌群、细菌总数	1次

三、检测方法及方法来源

3.1检测方法、使用仪器见表 3-1。

表 3-1 检测方法、使用仪器一览表

122 -043 A - 104 A - 104 A	14 9 9 66 2 66	
分析方法	使用监测仪器	检出限或最低 检出浓度
水质 六价铬的测定 二苯碳酰 二肼分光光度法 GB 7467-1987	V-1000 可见分光 光度计	0.004mg/L
多管发酵法《水和废水监测分析 方法》(第四版)国家环境保护 总局(2002年)第五篇第二章五 (一)	DNP-9162BS- III 电热恒温培养箱	/
水质 细菌总数的测定 平皿计 数法 HJ 1000-2018	DNP-9162BS- III 电热恒温培养箱	/
	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB 7467-1987 多管发酵法《水和废水监测分析方法》(第四版)国家环境保护总局(2002年)第五篇第二章五(一) 水质 细菌总数的测定 平皿计	水质 六价铬的测定 二苯碳酰 V-1000 可见分光 二肼分光光度法 GB 7467-1987 光度计 多管发酵法《水和废水监测分析 方法》(第四版)国家环境保护总局(2002 年)第五篇第二章五 (一) 水质 细菌总数的测定 平皿计 DNP-9162BS-III

四、检测分析质量控制和质量保证

检测采样及样品分析均严格按照《环境监测技术规范》及《环境 监测质量技术》等要求进行,实施全程序质量控制。具体质控措施如 下:

- 4.1 合理布设检测点位,保证各检测点位布设的科学性和可比 性。
- 4.2 地下水监测仪器符合国家有关标准或技术要求。采样、运输、 保存、分析全过程严格按照《环境水质监测质量保证手册》(第二版)

和《水和废水监测分析方法》(第四版)规定执行,实验室分析过程 中采取明码平行样、加标回收或质控样等质控措施。

- 4.3 检测分析方法采用国家颁布的标准(或推荐)分析方法,检 测人员经考核并持有合格证书, 所有检测仪器经计量部门检定/校准 并在有效期内。
 - 4.4 检测数据严格实行三级审核制度。

五、检测结果统计

5.1 地下水检测结果见表 5-1。 地下水检测结果表

			检测结果		
采样时间	采样点位	样品描述	六价铬 (mg/L)	总大肠菌 群(MPN/L)	细菌总数 (CFU/mL)
	D01 项目上 游水井	无色、无异 味、无杂质	未检出	未检出	12
2023, 06, 15	D02 厂区水 井	无色、无异 味、无杂质	未检出	未检出	17
	D03 项目下 游水井	无色、无异 味、无杂质	未检出	未检出	21

报告结束

编制人:如今 审核人:王叔玉 签发日期: プロ3年 6月7/日

附件 4 2022 年数据报告

KLEM-TF-901-2021

检测报告

报告编号: KL2022E0016

项目名称: 2022 土壤及地下水环境监测

委托单位: 孟州市光宇皮业有限公司

样品类别: 土壤、地下水

KLEM-TF-901-2021

说明

- 一、本检测结果无本公司检验检测专用章、骑缝章及 CMA 章无效。
- 二、报告无编制人、审核人、批准人签字无效。
- 三、报告发生任何涂改后无效。
- 四、本报告未经同意不得以任何方式复制及广告宣传,经同意复制 的复印件,应由我公司加盖"检验检测专用章"确认。

五、由委托方自行采集的样品,本公司仅对送检样品检测数据负责, 不对样品来源负责,若委托方提供信息存在错误、偏离或与实际情况不 符,本公司不承担由此引起的责任,无法复现的样品,不受理申诉。

六、委托方对检测结果有异议,应在收到报告之日起七日内向本公司提出书面复检申请,逾期恕不受理。

河南省科龙环境工程有限公司

公司地址:济源市文昌中路 88 号

邮 编: 459000

电 话: 15670820330

传 真: 0391-5575099

一、概述

受孟州市光宇皮业有限公司的委托, 我公司对其 2022 土壤和地 下水进行检测分析。我公司将具备检测资质的碘化物分包给具有检测 资质的河南中方质量检测技术有限公司。

二、检测内容

2.1 土壤检测内容见表 2-1。

State Control of the	
表 2-1	土壤检测内容
	工 200 100 121 121 121

plant and a state of the state	364 10 Gd 1.1 444		
检测点位	采样深度	检测因子	检测频次
T1 厂区外西北农田(背景点)		-	
T2 废水总排口西侧			
T3 污水处理系统西侧			
T4 危废临时堆场			
T5 含铬废水处理系统北侧			
T6 污水处理系统东北侧		《土壤环境质量-建	
T7 前处理车间 (附二号车间) 东侧	0~0.5m	0~0.5m 设用地土壤污染风险 管控标准(试行)》 (GB 36600-2018)中	
T8 前处理车间西侧			1次
T9 染色干洗车间西侧		45 项基本因子、pH	
T10 化料仓库东侧			
T11 染色浸酸鞣制车间东侧			
T12 涂饰烫剪车间东侧			
T13 废水调蓄池西侧 (深层样)	5-6m		
T14 厌氧罐东侧	0~0.5m		
o o bloom to the well to she had to	2 01 014		

2.2 地下水检测内容见表 2-2。

表 2-2 地下水检测内容

检测点位	检测因子	检测频次
D1 项目上游水井 D2 厂区水井 D3 项目下游水井	色度、喚和味、浑浊度、肉眼可见物、pH、总 硬度、溶解性总固体、硫酸盐、氯化物、铁、 锰、铜、锌、铝、挥发酚、阴离子表面活性剂、 耗氧量、氨氮、硫化物、钠、硝酸盐、氯化物、 氟化物、*碘化物、汞、砷、硒、镅、六价等、 铅、三氯甲烷、四氯化碳、苯、甲苯、亚硝酸 盐、总磷、总铬、总大肠菌群、菌落总数、乙 苯、二甲苯	1天,1次/ 天

151

三、检测方法及方法来源

3.1 检测方法、使用仪器见表 3-1。

表 3-1	检测方法、	使用仪器一览表

45 1		位 刻 方 次 、 使 用 ①	(谷一克农	
	检测项目 分析方法		使用监测仪器	检出限或 最低检出 浓度
	рН	土壤 pH 的测定 电位法 HJ 962-2018	PXSJ-226 离子计	1
	聯	土壤和沉积物 汞、砷、硒、铋、 锑的测定 徽波消解/原子荧光 法 HJ 680-2013	AFS-230E 原子荧光光度计	0.01 mg/kg
	镉	土壤和沉积物 12 种金属元素 的测定 王水提取-电感耦合等 离子体质谱法 HJ 803-2016	SUPEC7000 电感耦合等离子 体质谱仪	0.09 mg/kg
	六价铬	土壤和沉积物 六价格的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019	TAS~990F型 原子吸收分光光 度计	0.5mg/kg
	铜	土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光 光度法HJ 491-2019	TAS-990F型 原子吸收分光光 度计	1mg/kg
±	铅	土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光 光度法HJ 491-2019	TAS-990F 型 原子吸收分光光 度计	10mg/kg
壤	汞	土壤和沉积物 汞、砷、硒、铋、 锑的测定 微波消解/原子荧光 法 HJ 680-2013	AFS-230E 原子荧光光度计	0.002 mg/kg
	镍	土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光 光度法 HJ 491-2019	TAS-990F 型 原子吸收分光光 度计	3mg/kg
	四氯化碳	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.3 μg/kg
	三氯甲烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.1 μg/kg
	氣甲烷	土壤和沉积物 挥发性有机物 的测定 吹扫补集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.0 µg/kg
	1,1-二氯 乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气相色谱质谱联用 仪	1.2 μg/kg

	1,2-二氟 乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.3 μg/kg
	1,1-二氟 乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.0 µg/kg
	順-1,2- 二氯乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.3 μg/kg
	反-1,2- 二氟乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 4 μ g/kg
	二氯甲烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.5 μg/kg
	1,2-二氯 丙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 1 μ g/kg
土	1,1,1,2- 四氯乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 2 μg/kg
壤	1,1,2,2~ 四氟乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.2 μg/kg
	四氯乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 4 μ g/kg
	1,1,1-三 氣乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.3 µg/kg
	1,1,2-三 氟乙烷	土壤和沉积物 挥发性有机物 的测定 吹扫搅集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.2 µg/kg
	三氯乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 2 μ g/kg
	1,2,3-三 氟丙烷	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.2 μg/kg
	氟乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.0 µg/kg

	_	1 28 5m 37 5m 44 200 d3 14 -t 10 41	0.000	
	苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.9 μg/kg
	氨苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气相色谱质谱联用 仪	1. 2 μ g/kg
	1,2-二氣 苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.5 μg/kg
	1,4-二氯 苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气相色谱质谱联用 仪	1.5 μg/kg
	乙苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.2 μg/kg
	苯乙烯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	l. 1 μg/kg
£	甲苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.3 µg/kg
壊	间-二甲 苯+ 对-二甲 苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.2 μg/kg
	邻-二甲 苯	土壤和沉积物 挥发性有机物 的测定 吹扫捕集/气相色谱- 质谱法 HJ 605-2011	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 2 μg/kg
	硝基苯	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.09 mg/kg
	苯胺	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.09 mg/kg
	2-氯苯酚	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.06 mg/kg
	苯并[a] 蒽	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1 mg/kg
	苯并[a] 芘	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1 mg/kg

土壤	苯并[b] 荧蒽	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.2 mg/kg
	苯并[k] 荧蒽	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1 mg/kg
	尨	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1 mg/kg
	二苯并 [a,h]蒽	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1 mg/kg
	茚并 [1,2,3-c d]芘	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.1
	蔡	土壤和沉积物 半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.09 mg/kg
	pH	水质 pH 的测定 玻璃电极法 HJ 1147-2020	PXSJ-226 离子计	1
	色度	水质 色度的测定 (铂钴比色 法) GB 11903-89	50mL 比色管	1
	獎和味	生活饮用水标准检验方法 感官性状和物理指标 (3.1 奥和 味 嗅气和尝味法) GB/T 5750.4-2006	7	/
	浑浊度	水质 浊度的测定 浊度计法 HJ 1075-2019	WZS-188 浊度计	o. antu
地下水	肉眼可见 物	生活饮用水标准检验方法 應 官性状和物理指标 GB/T 5750.4-2006	7	/
	溶解性总固体	生活饮用水标准检验方法 感官性状和物理指标 (8.1 溶解性总固体 称重法) GB/T 5750.4-2006	LE-204E 电子天平	/
	总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB 7477-1987	滴定管	0.05 mmo1/L
	硫酸盐	水质 硫酸盐的测定 铬酸钡分 光光度法(试行)HJ/T 342-2007	V-1000 可见分光 光度计	8mg/L
	氰化物	水质 氯化物的测定 硝酸银滴 定法 GB 11896-1989	酸式滴定管	10mg/L

	铁	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0.82 μg/L
	锰	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0. 12 μg/L
	铒	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0.08 μg/L
	锌	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0.67 μg/L
	铝	水质 65 种元素的测定 电感耦 合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	1.15 μg/L
地下水	挥发酚	水质 挥发酚的测定 4-氨基安 替比林分光光度法 HJ 503-2009	V-1000 可见分光 光度计	0.0003 mg/L
	阴离子表 面活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB 7494-1987	V-1000 可见分光 光度计	0.05 mg/L
	耗氧量	生活饮用水标准检验方法 有 机物综合指标 GB/T 5750.7-2006 1.1 酸性高锰酸 钾滴定法	演定管	0.05mg/l
	氨氮	水质 氨氮的测定 纳氏试剂分 光光度法 HJ 535~2009	V-1000 可见分光 光度计	0. 025 mg/L
	硫化物	水质 硫化物的测定 亚甲基蓝 分光光度法 HJ 1226-2021	V-1000 可见分光 光度计	0.003 mg/L
	钠	水质 钾和钠的测定 火焰原子 吸收分光光度法 GB 11904-1989	TAS-990F 型原子 吸收分光光度计	0.01mg/L
	亚硝酸盐 氮	水质 亚硝酸盐氮的测定 分光 光度法 GB 7493-1987	V-1000 可见分光 光度计	0.003 mg/L
	硝酸盐氮	水质 硝酸盐氮的测定 紫外分 光光度法(试行) HJ/T 346-2007	UV-1600 紫外可见 分光光度计	0.08mg/L
	氰化物	水质 氰化物的测定 容量法和 分光光度法 方法 3 异烟酸-巴 比妥酸分光光法 HJ 484-2009	V-1000 可见分光 光度计	0.001 mg/L

	189	氟化物	水质 氟化物的测定 离子选择 电极法 GB 7484-87	PXSJ-226 离子计	0.05mg/I
		乘	水质 汞、砷、硒、铋和锑的测 定 原子荧光法 HJ 694-2014	AFS-230E 原子荧光光度计	0.04 μg/L
		碘	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	AFS-230E 原子荧光光度计	0. 3 μ g/L
		硒	水质 汞、砷、硒、铋和锑的测 定 原子荧光法 HJ 694-2014	AFS-230E 原子荧光光度计	0. 4 μ g/L
		镉	水质 65 种元素的测定 电磨耦 合等离子体质谱法 HJ 700-2014	SUPEC7000 电痨耦合等离子 体质谱仪	0. 05 μg/L
	9	六价铬	水质 六价铬的测定 二苯碳 酰二腈分光光度法 GB 7467-1987	V-1000 可见分光 光度计	0.004 mg/L
地下水		铅	水质 65 种元素的测定 电熔耦 合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0.09 µg/L
	三氯甲烷		水质 挥发性有机物的测定 吹 扫捕集/气相色谱~质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.4 µ g/L
	四氯化碳		水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.5 µ g/L
	苯		水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.4 µ g/L
	甲苯		水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	1.4 µ g/L
	乙苯		水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	0.8μg/L
	二甲	邻-二 甲苯	水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	1. 4 μ g/L
	平苯	间+对 -二甲 苯	水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	GCMS-QP2010SE 气 相色谱质谱联用 仪	2. 2 μ g/L
		总磷	水质 总磷的测定 钼酸铵分光 光度法 GB 11893-1989	V-1000 可见分光 光度计	0.01mg/L

	总铬	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	SUPEC7000 电感耦合等离子 体质谱仪	0.11 μg/L
地下	总大肠菌 群	水质 总大肠菌群、类大肠菌群 和大肠埃希氏菌的测定 酶底 物法 HJ 1001-2018	DNP-9162BS-Ⅲ电 热恒温培养箱	10MPN/L
水	菌落总数	水质 细菌总数的测定 平皿计 数法 HJ 1000-2018	DNP-9162BS-Ⅲ电 热恒温培养箱	1
	*碘化物	生活饮用水标准检验方法无机 非金属指标 GB/T 5750, 5-2006 11.3	酸式滴定管-25 5LD-2003-25-003 微量滴定管-5 5LD-2003-5-001	0.025 mg/L

四、检測分析质量控制和质量保证

检测采样及样品分析均严格按照《环境监测技术规范》及《环境 监测质量技术》等要求进行,实施全程序质量控制。具体质控措施如 下:

- 4.1 合理布设检测点位,保证各检测点位布设的科学性和可比性。
- 4.2 土壤市点、采样、样品制备、样品分析等均按照《土壤环境 监测技术规范》(HJ/T166-2004)要求进行,实验室分析过程中采取 明码平行样、加标回收或质控样等质控措施。
- 4.3 地下水水质监测仪器符合国家有关标准或技术要求。采样、运输、保存、分析全过程严格按照《环境水质监测质量保证手册》(第二版)和《水和废水监测分析方法》(第四版)规定执行,实验室分析过程中采取明码平行样、加标回收或质控样等质控措施。
- 4.4 检测分析方法采用国家颁布的标准(或推荐)分析方法,检测人员经考核并持有合格证书,所有检测仪器经计量部门检定/校准 并在有效期内。
 - 4.5 检测数据严格实行三级审核制度。

五、检测结果统计

5.1 土壤检测结果见表 5-1-1,5-1-2,5-1-3。

报告编号: KL2022E0016

表 5-1-1

土壤检測结果表

采样时间			2022.	2022. 08. 10		
采样点位	T1 厂区外西北农田 (背景点)	T2 炭水总排口西側	T3 污水处理系统西 侧	T4 危废临时堆场	T5 含铬度水处理系统北侧	T6 污水处理系统东北侧
经纬度	E112° 50' 53.73" N 34° 54' 02.51"	E112° 50' 54.00" N 34° 54' 02.19"	E112* 50' 53.67" N 34* 53' 58.46"	E112° 50' 53.68" N 34° 53' 54.50"	E112° 50' 55. 43" N 34° 53' 54. 43"	E112° 50′ 56.10″ N 34° 54′ 01.20″
采样深度	0-0.5m	0-0.5ш	0-0.5m	0-0.5ш	0-0. 5ш	
本 品 端 法	棕黄色, 轻壤土, 田 粒状	棕黄色、乾壤土、困 粒状	椋黄色、轻壤土、团 粒状	棕黄色、轻壤土、团 粒状	棕黄色、轻壤土、团 粒状	棕黄色、轻膜土、团 粒状
Н	7.58	7.60	7.80	7.72	7.65	7.54
神(mg/kg)	10.3	7.57	7.97	8.38	10.3	8.74
編 (mg/kg)	0.11	0.14	0.13	0,14	0.14	0.12
六 台 略 (mg/kg)	米参出	未检出	朱梭出	未卷出	未檢出	未检出
铜 (mg/kg)	23	27	26	29	38	29
铅 (mg/kg)	20	28	22	20	23	29
汞 (mg/kg)	米魯出	米極出	未检出	未检出	未检出	米魯出
镍 (mg/kg)	37	30	36	38	32	32
四氨化碳 (μg/kg)	未检出	朱检出	未检出	朱春出	未检出	未检出

第 10 页 共 20 页

报告编号: KL2022E0016

			-	T								-
4.2	未检出	未替出	米松出	未卷出	米泰田	未卷出	米魯田	未检出	朱榆出	朱췅出	13.2	未检出
5.3	未检出	未检出	未检出	未检出	未检出	米格出	未檢出	米卷出	未检比	开象米	未检出	未检出
5.6	米魯田	未检出	未替出	未检出	未检出	未检出	未检出	未檢出	米泰出	未輸出	12.5	未检出
7.3	米泰出	米魯出	未检出	未检出	未卷出	未检出	未移出	未检出	五条米	米格出	17.1	未参出
5.5	未检出	1.5	朱参出	米检出	朱检出	未輸出	未检出	未检出	未检出	未卷出	13.9	朱检出
3.5	未检出	未检出	未检出	未检出	未检出	未检出	未检出	未检出	未發出	未检出	5.5	未檢出
三無甲茲(中國/kg)	無甲烷 (μg/kg)	1,1-二義乙族 (中g/kg)	1,2-二氯乙烷 (μg/kg)	1,1-二無乙烯 (µg/kg)	而-1,2-二歲 乙烯 (μg/kg)	反-1,2-二氧 乙烯(μg/kg)	二無平然 (μg/kg)	1,2-二氯丙烷 (μg/kg)	1,1,1,2-四氟 乙烷 (μg/kg)	1,1,2,2-四級 乙烷(µg/kg)	四載乙烯(中g/kg)	1,1,1-三氟乙 烷 (μg/kg)

报告编号: KL2022E0016

第11 页共20页

1,1,2-三氟乙	4	1 3	1 3	* 17.7		13
2	大 有 五	米魯田	米魯田	未检出	未檢出	米魯出
三氟乙烯(中g/kg)	未检出	朱检出	未检出	未检出	未检出	未發出
1,2,3-三氟丙 烷(μg/kg)	米魯出	未检出	朱泰出	朱榆出	未檢出	未检出
無乙烯 (μg/kg)	未检出	未检出	未检出	未卷出	未检出	未检出
* (μg/kg)	未检出	朱極出	3.5	未检出	2.6	朱蓉田
氦苯 (μg/kg)	未卷出	朱参出	未检出	未检出	未检出	米梅比
1,2-二氨苯 (μg/kg)	未检出	朱检出	未检出	未检出	車	章
,4-二無茶 (μg/kg)	未检出	未替出	未检出	米泰出	未检出	未检比
乙苯 (μg/kg)	2.5	2.6	未检出	未检出	未检出	米泰田
茶乙烯 (μg/kg)	未輸出	1.9	2.2	未检出	2.1	2.0
甲苯 (µg/kg)	未检出	1.7	2.6	1.6	2.1	-
同-二甲苯+对 -二甲苯 (μg/kg)	1.6	1.8		未检出	米魯田	2.1
你-二甲茶 (μg/kg)	未检出	未卷出	未检出	米棒比	未卷出	- 半参出
概基茶 (mg/kg)	未检出	米泰比	0.16	未輸出	쿃	未检出

第12页共20页

← 校 (mg/ kg)	未参出	未检出	米魯出	米泰田	王金米	子學卡
2-氨苯酚 (mg/kg)	0.17	朱梭出	0.17	米	*************************************	* * * * * * * * * * * * * * * * * * *
苯并[a] 慈 (mg/kg)	0.1	0.1	0.1	0.1	0.1	0
来并[a] 花 (mg/kg)	未检出	未检出	0.3	未卷出	*	
孝并[b] 荧蒽 (mg/kg)	未检出	未检出	0.4	米泰出	米 宗教	
業井[k] 英葛 (mg/kg)	未检出	未检出	0.2	未检出	米魯出	0.2
意 (mg/kg)	未發出	0.1	0.1	李锋田	0 1	. 0
二苯并[a,h] 蒽 (mg/kg)	朱卷出	未参出	未检出	米泰田		- C. I
南并 [1,2,3~cd]按 (mg/kg)	未检出	未检出	米魯出	未检出	米参出	
泰 (mg/kg)	0, 12	0.11	0.11	0.12	0 19	11.0
表 5-1-2			华州縣安鄉十			0.11
采样时间			2022.	2022. 08. 10		
采样点位	T7 前处理车间(附 二号车间) 车側	T8 前处理车间西侧	T9 染色干洗车间函 包	T10 化料仓库东侧	T11 染色浸酸鞣制车 回车包	112涂饰烫剪车间东
经纬度	E112" 51' 02.67" N 34" 53' 56.73"	E112° 50' 56: 02" N 34° 54' 58. 21"	E112° 50' 56.58" N 34° 54' 56.48"	E112° 51' 03.06" N 34° 54' 00.01"	B112° 51' 02.84" N 34° 53' 58.59"	E112° 51' 03.06" N 34° 54' 00.01"

第13 页 共 20 页

-0. 5m	- 1	0-0. 5n	0-0.5m	0-0. 5m	0-0.5m	0-0 5
保黄色、軽ැ美土、図 棕黄· 粒状	築	黄色、乾燥土、困粒状	泰核色、粉練土、困 名字	核黄色、轻壤土、团	棕黄色、轻壤土、因	你黄色、松塘土、图
7.63		7.73	7.60	7 60	教状	松状
10.3		10.9	10.3	00.1	7.46	7. 40
0.13		0.12	0.50	0.01	9.00	8.68
未检出	*	未檢出	A. A	0.13	0.14	0.11
37		30	37	200	大 国 国	米魯出
20 17	11		. 06	00	333	35
未检出。李林山	*	7	3 3	23	20	61
	100	3	米爾田	未检出	未检出	未检出
38 49	49		31	37	34	- 81
未检出未检出	未检	-31	木泰出	木格出	五字	15 4 4
5.7 4.8	4.8		16.4	9 5	H o	日本
					9.0	4.1
木砂出 未检出	米格	-33	未检出	未检出	未检出	光章本
未检出未检出	米極	-11	未检出	米魯出	米参出	1000年
				1000 Sept. S	-	日世代

报告编号: KL2022E0016

第14页共20页

米魯出 米泰夫	大	1	大 本 本 本 本 本 本 本 本 本 本 五 五 五 五 五 五 五 五 五 五 五 五 五	大衛田 大衛田 大衛	米魯田 米格田 米格田 米格田 土	·	大学 1 1 1 1 1 1 1 1 1	南山 木包田 米地 路山	10.7 9.6	米魯田 米魯田	ž l
未检出	未检出	未卷出	未检出	未奉出	未备出	未检出	米	20.3		1 章	1 4
未检出	米魯出	未检出	朱魯出	未檢出	未检出	未检出	未檢出	10.8	朱泰出	未检出	中外华
朱泰迅	未检出	未检出	未检出	未检出	未参出	未卷出	未检出	14.8	未卷出	未检出	五金米
1,2-二氟乙烷 (μg/kg)	1,1-二氟乙烯 (μg/kg)	Ã-1,2-二業 乙烯(μg/kg)	反-1,2-二氧 乙烯 (μg/kg)	二集甲烷(μg/kg)	1.2-二氟丙烷 (μg/kg)	1,1,1,2-四氯 乙烷 (μg/kg)	1,1,2,2-四集 乙烷(μg/kg)	四氟乙烯 (µg/kg)	1,1,1-三氟乙烷(18/kg)	1,1,2-三氟乙 烷(μg/kg)	三無乙烯

报告编号: KL2022E0016

第15页共20页

第16页共20页

0.1	0.1	0.1	1.6	1 0	
				0.1	0.1
米魯田	未检出	未检出	0.8	0.3	社会米
0.4	未检出	朱泰比	1.9	0.4	
未检出	未检出	未檢出	1.1	6.0	9 6
0.1	米魯出	米	0	3 .	0.2
4.64	4	1	1.0	0.1	0.1
A有田	木物田	米魯出	6.0	9.0	未检出
未检出	未检出	未检出	2.1	0.6	未检比
0.11	11.0		9		

表 5-1-3	土壤检测结果表	
采样时间	2022. 08. 10	2022. 08. 27
采样点位	T13 废水调蓄池西侧 (深 层样)	T14 灰氣罐东侧
经纬度	E112° 50′ 53, 44″ N 34° 53′ 55, 18″	E112° 50′ 56.06″ N 34° 54′ 29.21″
果样深度	5-6m	0-0, 5m
样品描述	棕黄色、轻壤土、团粒状	棕黄色、轻壤土、团粒制
pH	7, 82	7.64
神 (mg/kg)	7, 99	10.6
镉 (mg/kg)	0.14	未检出
六价铬 (mg/kg)	未检出	未检出
铜 (mg/kg)	38	32
铅 (mg/kg)	18	24
汞 (mg/kg)	未检出	未检出
傑 (mg/kg)	33	30
四氯化碳(μg/kg)	未检出	未检出
三氟甲烷(μg/kg)	5. 0	2. 5
氯甲烷 (μg/kg)	未检出	未检出
1,1-二氟乙烷 (μg/kg)	未检出	未检出
I,2-二氯乙烷 (μg/kg)	未检出	未检出
1,1-二氟乙烯 (μg/kg)	4. 1	未检出
顺-1,2-二氯乙烯 (μg/kg)	未检出	未检出
反-1,2-二氯乙烯 (μg/kg)	未检出	未检出
- 氯甲烷 (μg/kg)	未检出	49. 4
1,2-二氯丙烷 (μg/kg)	未检出	未检出
1,1,1,2-四氯乙烷 (μg/kg)	未检出	未检出

1,1,2,2-四氟乙烷 (μg/kg)	未检出	未检出
四氟乙烯(μg/kg)	13. 8	未检出
1,1,1-三氟乙烷 (μg/kg)	未检出	未检出
1,1,2-三銀乙烷 (μg/kg)	未检出	未检出
三氯乙烯 (μg/kg)	未检出	未检出
1,2,3-三氯丙烷 (μg/kg)	未检出	未检出
親乙烯 (μg/kg)	未检出	未检出
苯 (µg/kg)	未检出	未检出
氯苯 (μg/kg)	未检出	未检出
1,2-二氯苯(μg/kg)	未检出	未检出
1,4-二氟苯(μg/kg)	未检出	未檢出
乙萃 (μg/kg)	未检出	2. 4
苯乙烯(μg/kg)	未检出	2.0
甲苯 (μg/kg)	1, 9	未检出
何-二甲苯+对-二甲苯 (µg/kg)	未检出	1.5
邻-二甲苯(μg/kg)	未检出	未检出
硝基苯 (mg/kg)	未检出	未检出
苯胺 (mg/kg)	未检出	未检出
2-氟苯酚 (mg/kg)	未检出	未检出
苯并[a]蒽 (mg/kg)	0. 1	0. 1
苯并[a]芘 (mg/kg)	0.3	未检出
έ并[b] 荧葱 (mg/kg)	0.4	未检出
t并[k]荧蒽 (mg/kg)	0. 2	未检出
墓 (mg/kg)	未检出	未檢出
苯并[a,h]蒽 (mg/kg)	未检出	未检出

. . . .

茚并[1,2,3-cd]芘 (mg/kg)	0.6	未检出
萘 (mg/kg)	0. 11	0, 12

表 5-2	地下水检	测结果表		
采样时间	2022. 08. 10			
采样点位	D1 项目上游水井	D2 厂区水井	D3 项目下游水井	
样品描述	无色、无杂质、 无异味	无色、无杂质、 无异味	无色、无杂质、 无异味	
pH	7, 1	7. 3	7. 2	
色度 (度)	<5	<5	<5	
喚和味	无	无	无	
浑浊度 (NTU)	1.2	1.3	1. 9	
肉眼可见物	无	无	无	
总硬度(以 CaCO ₃ 计) (mg/L)	316	327	306	
容解性总固体 (mg/L)	517	506	524	
硫酸盐 (mg/L)	68	69	65	
氯化物 (mg/L)	69	72	80	
铁 (μg/L)	1. 79	2. 11	1. 22	
锺 (μg/L)	0. 25	0. 26	0.36	
铜 (μg/L)	1. 20	1. 12	1. 11	
锌 (μg/L)	2. 08	1. 96	1. 85	
铝 (µg/L)	18, 2	9. 08	10. 2	
挥发酚 (mg/L)	0.0005	0.0007	0.0006	
阴离子表面活性剂 (mg/L)	未检出	未检出	未检出	
耗氧量 (mg/L)	1. 57	1.80	1. 92	
氨氮 (mg/L)	未检出	未检出	未检出	
硫化物 (mg/L)	0.006	0.005	0.007	

钠 (mg/L)	22, 6	21. 9	24. 2
硝酸盐氮(mg/L)	5. 73	4, 56	6, 35
亚硝酸盐氮 (mg/L)	未检出	未检出	未检出
氰化物 (mg/L)	未检出	未检出	未检出
氟化物 (mg/L)	0. 46	0. 44	0, 42
汞 (μg/L)	0. 69	0.46	0, 61
砷 (μg/L)	4.7	3, 9	3. 0
硒 (µg/L)	8. 6	5. 5	7. 8
镉 (μg/L)	0. 26	0. 25	0, 24
六价铬 (mg/L)	未检出	未检出	未检出
铅 (μg/L)	0. 38	0.36	0. 36
三氯甲烷 (μg/L)	3. 5	3, 1	3. 1
四氯化碳(μg/L)	未检出	未检出	未检出
苯 (μg/L)	未检出	未检出	未检出
甲苯 (μg/L)	未检出	未检出	未检出
乙苯 (µg/L)	1.0	0.8	1.0
二甲苯 (μg/L)	未检出	未检出	未检出
总磷 (mg/L)	0.06	0. 07	0.05
总铬 (μg/L)	4. 02	4. 03	3. 95
大肠菌群 (MPN/L)	未检出	未检出	未检出
有落总数 (CFU/mL)	6	8	10
*碘化物 (mg/L)	<0.025	<0.025	<0.025

注: *碘化物引用河南中方质量检测技术有限公司(资质证书编号: 181600340103)报告,报告编号: STIBGE22080124。

编制人: 7022年 9月 05日

报告结束

检测报告

TEST REPORT

报告编号: LMH20210881A

项目名称: 土壤、地下水自行监测项目

委托单位: 孟州市光宇皮业有限公司

检测类别:委托检测

洛阳黎明检测服务有限公司

Luoyang Liming Testing and Service Co. Ltd.

Luoyang Liming Testing and Service Co. Ltd. 第 1 页 共 11 页

报告编号: LMH20210881A

1 前言

受孟州市光宇皮业有限公司委托, 我公司于 2021 年 7 月 16 日对该公 司院区土壤、地下水进行了现场采样。

2 检测内容

检测内容见表 1。

表1土壤检测内容一览表

检测点位	检测类别	检测项目
检测点位 T1 厂区外西北农田(0~0.2m) T2 废水总排口西侧(0~0.2m) T3 污水处理系统西侧(0~0.2m) T4 危废临时堆场(0~0.2m) T5T 含铬废水处理系统北侧(0~0.2m) T6 污水处理系统东北侧(0~0.2m) T7 前处理车间(附二号车间) 东侧(0~0.2m) T7 前处理车间两侧(0~0.2m) T8 前处理车间两侧(0~0.2m) T9 染色干洗车间西侧(0~0.2m) T10 化料仓库东侧(0~0.2m) T11 染色侵酸鞣制车间东侧	检测类别 土壤	检测项目 A1 类 (8 种): 镉、铅、铬、铜、锌、镍、汞、砷: A2 类 (8 种): 锰、钴、硒、钒、锑、铊、铍、钼; D1 类 (1 种): pH
(0~0,2m) T12 涂饰烫剪间东侧 (0~0.2m)		
D1 项目的上游水井	地下水	镉、铅、铬、铜、锌、镍、汞、砷、 锰、钴、硒、钒、锑、铊、铍、钼、 pH

地址:洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A 第

第2页共11页

3 检测分析方法

检测过程中采用的分析方法见表 2、表 3。

土壤检测分析方法一览表 表 2

序号	检测项 目	分析方法及方法来源	仪器名称及型号	检出限
1	pH 值	土壤中 pH 值的测定 玻璃电极 法 NY/T 1377-2007	实验室 pH 计 /PHSJ-5/LTIS-548	7
2	铬			3.0mg/kg
3	砷			2.0 mg/kg
4	铜			1.2mg/kg
5	铅	土壤和沉积物 无机元素的测	ar Al-Albert de Ne Mil-Aberta	2.0mg/kg
6	镍	定 波长色散 X 射线荧光光谱	X-射线荧光光谱仪/S8 Tiger/LTIS-012	1.5mg/kg
7	锌	法 HJ 780-2015		2.0mg/kg
8	鑑			10.0mg/kg
9	钻			1.6 mg/kg
10	钒			4.0mg/kg
11	镉	土壤质量 铅、镉的测定 石墨 炉原子吸收分光光度法 石墨 炉原子吸收分光光度法 GB/T 17141-1997	单石墨炉原子吸收分光 光度计 /PinAAcle900/LTIS-465	0.01 mg/kg
12	锑	土壤和沉积物 汞、砷、硒、铋、	原子荧光光谱仪 /AFS-8220/LTIS-464	0.01mg/kg
13	硒	锑的测定 微波消解/原子荧光		0.01 mg/kg
14	汞	法 HJ 680-2013	/AFS-8220/L115-404	0.002mg/kg
15	钼	土壤和沉积物12种金属元素的 測定王水提取-电感耦合等离 子体质谱法 HJ803-2016	Agilent7900	0.1mg/kg
16	铊	土壤和沉积物 铊的测定 石墨 炉原子吸收分先光度法 HJ 1080-2019	石墨炉原子吸收分光光 度计	0.1 mg/kg
17	铍	土壤和沉积物 铍的测定石墨 炉原子吸收分光光度法 HJ 737-2015	/PinAAcle900Z/LTIS-465 /LTIS-465	0.03 mg/kg

地址:洛阳市西工区王城大道 69号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A 第 3 页 共 11 页

表 3 地下水检测分析方法一览表

序号	检测项 目	分析方法及方法来源	仪器名称及型号	检出限
1	pH 值	水质 pH 值的测定 电极法 便携式 pH 计 HJ 1147-2020 /PHB-4/LTIS-369		1
2	铬			0.03 mg/L
3	铜			0,006 mg/L
4	镍			0.007 mg/L
5	锌	水质 32 种元素的测定 电感	电感耦合等离子体发射光	0.004 mg/L
6	锰	耦合等离子体发射光谱法 HJ 776-2015	谱仪/Avio 500/LTIS-467	0.004 mg/L
7	钻			0.01 mg/L
8	钼			0.008 mg/L
9	矾			0.01 mg/L
0	祵	水质 汞、砷、硒、铋和锑的 测定 原子荧光法 HJ 694-2014	原子荧光光度计 /AFS8220/LTIS-464	0.4 μg/L
11	汞			0.04 μg/L
12	砷			0.3 μg/L
13	锑			0.5 μg/L
14	铅	生活饮用水标准检验方法 金 属指标 无火焰原子吸收分光 光度法 GB/T 5750.6-2006		2.5μg/L
15	鳜	生活饮用水标准检验方法 金 属指标 无火焰原子吸收分光 光度法 GB/T 5750.6-2006 9.1	单石墨炉原子吸收光谱仪 /PinAAcle900Z/LTIS-465	0.5μg/L
16	铊	水质 铊的测定石墨炉原子吸 收分光光度法 HJ 748-2015		0.03μg/l
17	铍	生活饮用水标准檢验方法 金 属指标 电感耦合等离子体发 射光谱法 GB/T 5750.6-2006 20.4	电感耦合等离子体发射光 谱仪/Avio 500/LTIS-467	0.0002 mg/L

地址:洛阳市西工区王城大道 69号

Luoyang Liming Testing and Service Co. Ltd.

报告编号: LMH20210881A

第 4 页 共 11 页

4 检测质量保证

本次检测均严格按照国家相关标准的要求进行,实施全程序质量控制。 具体质控要求如下:

- 4.1 检测: 所有项目按国家有关规定及我公司质控要求进行质量控制。
- 4.2 检测期间,监督该项目生产工况是否达到相关要求,并进行记录存档。
- 4.3 检测分析方法采用国家颁布的标准(或推荐的)分析方法,检测人员 经过考核并持有合格证书。
- 4.4 所有检测仪器经过计量部门检定合格并在有效期内。
- 4.5 检测数据严格实行三级审核。

5 检测概况

2021年7月16日对孟州市光宇皮业有限公司的土壤、地下水进行了现场采样,当天完成全部检测项目的样品采集,7月22日至7月30日完成样品的检测。土壤中钼无检测资质,委托江西志科检测技术有限公司检测,数据引自报告ZK2107281001B。

6 检测分析结果

检测分析结果见表 4、表 5。

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A

第 5 页 共 11 页

rite.		_L 4m	AA-SIM	Art III
衣	4	土壌	伍视	珀米

单位:mg/kg, pH 无量纲

检测点位	T1 厂区外西北 农田 (0~0.2m)	T2 废水总排口 西侧 (0~0.2m)	T3 污水处理系统 西侧 (0~0.2m)	《土壤环境
采样日期	2021.7.16	2021.7.16	2021.7.16	质量 建设用 地土壤污染
样品编号	LMH20210881-1	LMH20210881-2	LMH20210881-3	风险管控标 准》(GB
样品状态	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、嶶、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	36600-2018) 筛选值二类
pН	8.6	8.3	8.7	1
辆	0.10	0.16	0.11	65
铅	20.7	25.0	25.6	800
铬	66.3	74.2	71.2	1
例	24.8	24.4	26.8	18000
錊	66.8	65.5	74.2	1
镍	31.8	29.4	31.3	900
汞	0.008	0.017	0.031	38
砷	9.8	8.5	9.6	60
锰	530	557	565	1
钻	13.3	13.6	13.2	70
桶	0.135	0.227	0.201	1
钒	79.8	81.9	24.9	752
60	0.253	0.562	0.336	180
98	1.0	0.8	1.2	1
铍	1.14	1.21	1.11	29
们*	0.8	0.8	1.0	1

地址: 洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A 第 6 页 共 11 页

Ads ofer a	T. Julie	LA MIN	Ad- III
续表 4	十二階	おチカ明	给學
	position " All Co.	THE DAY	PHIL

单位:mg/kg, pH 无量纲

《土壤环境 质量 建设月	T6 污水处理系 统东北侧 (0~0.2m)	T5T 含铬废水处 理系统北侧 (0~0.2m)	T4 危废临时堆 场 (0~0.2m)	检测点位
地土壤污染	2021.7.16	2021.7.16	2021.7.16	采样日期
风险管控标准》(GB	LMH20210881-6	LMH20210881-5	LMH20210881-4	样品编号
36600-2018) 筛选值二类	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	样品状态
1	8.6	8.6	8.3	pН
65	0.17	0.11	0.16	销
800	23.5	25.5	21.1	铅
1	70.3	77.3	92.9	铬
18000	23.4	29.0	25.3	铜
1	64.8	74.4	83.5	锌
900	27.9	33.1	32.2	镇
38	0.024	0.030	0.032	汞
60	8.9	9.5	9.7	砷
1	543	600	532	猛
70	12.7	14.5	13.7	钴
1	0.213	0.228	0.144	额
752	81.6	87.1	78.4	钒
180	0.320	0.258	0.314	锑
1	0.9	1.2	1.2	铊
29	1.27	1.17	1.30	铍
1	1.0	0.9	0.8	钼*

地址:洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A

第7页共11页

续表 4 土壤检测结果

单位:mg/kg, pH 无量纲

检测点位	T7 前处理车间 (附二号车间) 东侧 (0~0.2m)	T8 前处理车间 西侧 (0~0.2m)	T9 染色干洗车 间西侧 (0~0.2m)	《土壤环境 质量 建设用
采样日期	2021.7.16	2021.7.16	2021.7.16	地土壤污染 风险管控标
样品编号	LMH20210881-7	LMH20210881-8	LMH20210881-9	准》(GB
样品状态	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	36600-2018) 筛选值二类
pH	8.1	8.7	8.6	1
镉	0.11	0.16	0.11	65
铅	25.1	22.8	25.9	800
铬	70.9	80.3	74.0	1
铜	27.2	28.0	27.9	18000
鏬	73.6	73.8	72.4	1
镍	30.2	42.2	33.2	900
汞	0.034	0.010	0.020	38
砷	9.6	12.8	10.3	60
锰	559	604	594	1
钴	13.9	14.8	14.5	70
硒	0.196	0.206	0.195	1
钒	80.1	87.5	88.2	752
争	0.253	0.339	0.306	180
铊	0.9	1.2	1.0	1
铍	1.13	1.32	1.17	29
钼*	1.0	1.6	1.0	1

地址:洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A 第 8 页 共 11 页

续表 4 土壤检测结果

单位:mg/kg, pH 无量纲

检测点位	T10 化料仓库东 侧 (0~0.2m)	T11 染色侵酸鞣制车间东侧 (0~0.2m)	T12 涂饰烫剪间东 侧(0~0.2m)	《土壤环境 质量 建设用
采样日期	2021.7.16	2021.7.16	2021.7.16	地土壤污染
样品编号	LMH20210881-10	LMH20210881-11	LMH20210881-12	风险管控标 准》(GB
样品状态	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	粘土、黄棕、潮、 无根系、无石砾	36600-2018) 筛选值二类
pH	8.2	8.7	8.5	1
锱	0.17	0.17	0.16	65
铅	22.4	24.8	20.4	800
铬	81.5	72.4	102	5.7
铜	28.0	24.5	27.9	18000
争	72.8	67.1	74.3	1
镍	42.9	28,7	27.9	900
汞	0.010	0.021	0.006	38
静	12.4	8.2	9.0	60
锰	602	551	514	1
钻	14.8	13.1	13.0	70
硒	0.211	0.160	0.216	1
钒	25.6	82.9	75.1	752
98	0.320	0.351	0.341	180
铊	1.0	1.2	0.7	1
镀	1.31	1.40	1.28	29
铝*	0.9	1.1	0.9	1

注: "*"表示委外项目。

地址;洛阳市西工区王城大道 69号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A

第9页共11页

表 5 地下水检测结果

单位:mg/L,pH 无量纲

	D2 厂区水井	D1 项目的上游水井	检测点位
(地下水质量标 准) (GB/T	2021.7.16	2021.7.16	采样日期
14848-2017)田学 限值	LMH20210881-14	LMH20210881-13	样品编号
TN III.	无色, 无气味, 无浮油, 透明	无色,无气味,无浮油, 透明	样品状态
6.5≤pH≤8.5	7.4	7.5	pH
≤0.005	0.0005 (L)	0.0005 (L)	镉
≤0.01	0.0025 (L)	0.0025 (L)	铅
≤0.05	0.03 (L)	0.03 (L)	铬
≤1.00	0.006 (L)	0.006 (L)	侗
≤1.00	0.004 (L)	0.005	锌
≤0.02	0.007 (L)	0.007 (L)	镍
≤0.001	0.00004 (L)	0.00004 (L)	汞
≤0.01	6×10-4	0.0003 (L)	砷
≤0.10	0.004 (L)	0.004 (L)	铌
≤0.05	0.01 (L)	0.01 (L)	钻
≤0.01	0.0004 (L)	0.0004 (L)	硒
/	0.01 (L)	0.06	钒
≤0.005	0.0005 (L)	0.0005 (L)	够
≤0.0001	0.00003 (L)	0.00003 (L)	館
≤0.002	0.0002 (L)	0.0002 (L)	铍
≤0.07	0.02 (L)	0.02 (L)	911

地址:洛阳市西工区王城大道 69号

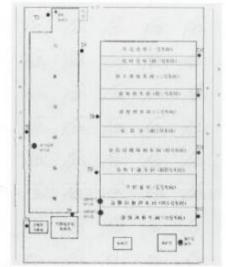
Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A 第 10 页 共 11 页

表 6 土壤采样点位信息记录表

检测点位	样品编号	纬度	经度
T1 厂区外西北农田 (0~0.2m)	LMH20210807-1	N34° 54'15"	E112° 50'44"
T2 废水总排口西侧 (0~0.2m)	LMH20210807-2	N34" 54'2"	E112" 50'54"
T3 污水处理系统西侧 (0~0.2m)	LMH20210807-3	N34" 53'58"	E112" 50'54"
T4 危废临时堆场 (0~0.2m)	LMH20210807-4	N34° 53'55"	E112° 50'53"
T5T 含铬废水处理系统北侧(0~0.2m)	LMH20210807-5	N34" 53'55"	E112" 50'53"
T6 污水处理系统东北侧 (0-0.2m)	LMH20210807-6	N34° 54'01"	E112° 50′56"
T7 前处理车间(附二号车 间) 东侧(0~0.2m)	LMH20210807-7	N34° 53'59°	E112° 50'53"
T8 前处理车间西侧 (0~0.2m)	LMH20210807-8	N34° 53'57"	E112" 50'56"
T9 染色干洗车间西侧 (0~0.2m)	LMH20210807-9	N34" 53'56"	E112" 50'56"
T10 化料仓库东侧 (0~0.2m)	LMH20210807-10	N34° 54'01"	E112° 51'31"
T11 染色侵酸鞣制车间东 侧 (0~0.2m)	LMH20210807-11	N34" 53'56"	E112" 51'22"
T12 涂饰烫剪间东侧 (0~0.2m)	LMH20210807-12	N34" 53'55"	E112° 51'21"

表 7 地下水采样点位信息记录表

检测点位	样品编号	纬度	经度
D1 项目的上游水井	LMH20210807-13	N34" 52'2"	E112° 50'59"
D2 厂区水井	LMH20210807-14	N34" 53'54"	E112" 50'59"


签发日期: 224.8.17

地址: 洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 报告编号: LMH20210881A

第 11 页 共 11 页

附图: 采样点位图

土壤监测点

附图: 采样照片

地址,洛阳市西工区王城大道 69号

电话: (0379) 62301611

附件 6 2020 年土壤及地下水检测报告

检测报告

TEST REPORT

报告编号: LMH20201179A

项目名称: 土壤、地下水检测项目

委托单位: 孟州市光宇皮业有限公司

检测类别:委托检测

洛阳黎明检测服务有限公司

Luoyang Liming Testing and Service Co. Ltd.

Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

告编号: L	MH20201179A	eport	第1页共7
项目名称	土壤、地下水松鄉項目	检测类别	委托检测
委托单位	孟州市光宇皮业有限公司	委托人	*******
样品来源	现场采样	联系方式	
来样编号 (据 号)		样品数量	14
样品编号	LMH20201179-1~14	到样日期	2020.9.17
样品状态	土壤。粘土、黄棕、潮、无棉	根系、无石砾;	地下水。无色透明液体
检测项目	見检测结果		
检测依据	見检測结果		
检测结果	检测结果见第 2-6 页。	250	是原理 2000年5月28
备注			检验检测专用章
编制成	10 was 300	上 批准	F. 78

地址。洛阳市四工区主城大道份号

供抗, (0379) 62301611

地址, 洛和市西工区王城大道 69 号

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

土壤检测结果								(pH 3	(pH 无能器)即(Z+mg/kg
检测点位		Hd	題	報	杂	88	华	草	楽	恭
TI厂区外西北农田	0-0.2m	8.4	0.19	22.7	7.07	28.6	71.1	32.0	0.022	10.6
72 成本总排口而侧	0-0.2m	8.5	0.13	17.6	73.3	23.6	59.4	30.6	0.026	10.3
73 污水处理系统而侧	0-0.2m	8.7	0.17	20.5	107	26.6	78.5	28.1	0.025	9.4
T4 危峻临时增扬	0-0.2m	8.5	0.15	16.5	6.88	21.6	56.0	26.6	0.028	9.1
TS 含铬酸水处理系统北侧	0-0.2m	8.2	0.11	25.2	82.2	28.7	89.4	41.8	0.033	12.3
T6 污水处理系统东北侧	0-0.2m	90	0.18	21.1	72.4	36.5	689	33.6	0.032	10.1
17 前处理车间(附二号车间来侧)	0-0.2m	8,5	0.20	24.1	72.9	26.4	67.3	32.2	610.0	0.6
T8 的处理车间西侧	0-0.2m	8.5	0.19	20.9	77.2	25.3	71.4	36.6	0.021	10,7
79 级色干洗车间两侧	0-0.2m	8.7	0.13	22.7	74.4	28.2	71.8	38.7	0.037	11.1
T10 化料仓库系侧	0-0.2m	9.1	0.18	26.5	9.66	31.7	77.8	35.7	0.018	11.2
711 染色浸酸鞣制车间末侧	0-0.2m	4,8	0.11	24.0	72.8	26.4	629	33.8	0.025	9.4
712 验体提到问系统	0-0.2m	4,8	0.19	23.2	76.6	24.8	64.6	31.3	0.036	90'00
《土壤环境质量建设用地土壤污染风险管控标准》(域件)(GB36600-2018)解选值数二类	集风险管控标题选值第二类		99	800	1	18000	1	006	38	09

Luoyang Liming Testing and Service Co. Ltd. 检测报告 洛阳黎明检测服务有限公司

Test Report

第3页共7页

报告编号: LMH20201179A 土壤检测结果

(pH 无脏的)单位:mgkg 未检出 米特田 未检出 未校出 未验出 未检出 未检出 未整出 未輸出 未散出 未散出 未检出 8 9970 101 0.46 0.47 0.75 0.71 1.02 0.93 0.46 1.06 0.67 0.54 湖 23 0.4 0.7 0.4 0.7 0.5 0.7 970 0.5 0.4 5 0.8 0.3 92 0.102 0.121 0.108 0.114 0.129 0.132 0.110 0.125 0.107 0,101 0.105 0.115 180 君 84.6 77.7 79.4 82.0 84.8 75,4 70.3 87.2 85.2 85.6 95.1 83.6 752 z 0.000 0.110 0.107 0.109 0.152 0.131 0.118 0.115 0.101 0.101 0.099 0.101 坂 -14.0 12.9 13.9 13.7 12.3 11.9 13.5 13.3 15.5 13.4 14,8 13.8 坦 2 484 510 866 594 \$65 483 \$59 553 280 98 288 585 쉞 0-0.2m 《十級环境质量遊疫用地土壤污染风险管控标准》 0-0.2m P-0.2m (试行) (GB36600-2018) 南达值第二类 救处理车间(超二号车间车侧) TII 染色胶酸鞣制车间来侧 T5 含铬酸水处理系统北侧 T6 污水处理系统东北侧 检测点位 T3 将水处理系统的侧 T9 染色干洗车间店侧 T12 条件拨剪用车侧 71 厂区外西北农田 T2 液水岛排口购侧 T8 前处现车间齿侧 T10 化料仓库东侧 T4 危度临时集局 1

電信: (0379) 62301611

题址, 路图市西工区主媒大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20201179A 地下水检测结果

第4页共7页

(nH 于景图) 单位。ma/t

地下水檢測结果		(pH 无量例)单位。mg/L		
检测项目	DI I	租上游水井	D2 厂区水井	依据 14848-2017 中 地下水质量常規[II 类指标服值
pH		7.31	7.36	6.5≤pH≤8.5
₩. mg/L		未检出	未检出	≤0.005
%, mg/L		未检出	未检出	≤0.01
格。mg/L		未粒出	未輸出	1
₩- mg/L		未检出	0.014	≤1.00
锌。mg/L		0.011	0.017	≤1.00
傑、mg/L		未检出	未检出	≤0.02
汞. mg/L		未检出	0.00015	≤0.001
59. mg/L		0.0008	0.0008	≤0.01
程。mg/L		未輸出	未检出	≤0.10
₩. mg/L		未检出	未檢出	≤0.005
6%, mg/L		未检出	未检出	≤0.01
ng/L		未检出	未检出	1
₩. mg/L		未检出	未检出	≤0.005
₹E. mg/L		未检出	未检出	≤0,0001
₩, mg/L		未检出	未检出	≤0.002
iH, mg/L		未检出	未检出	≤0.07
土壤采样点位坐标点				
采样地点		采样位置	纬度	经度
Ti 厂区外西北农	(9)	0-0.2m	34°54'15*	112°50'44*
T2 废水总排口西	98	0-0.2m	34°54'2"	112°50′54*
T3 污水处理系统	西侧	0-0.2m	34°53'58"	112°50'54*
T4 危废临时堆	馬	0-0.2m	34°53'55*	112"50"53"
T5 含铬炭水处理系统	统北侧	00.2m	34°53'55"	112°50'55*
T6 污水处理系统系	北侧	0-0.2m	34°54'1"	112°50′56*

地址, 俗阳市西工区王絋大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20201179A

第5页共7页

土壤采样点位坐标点

采样地点	采样位置	纬度	经度
T7 前处理车间(附二号车 间东侧)	0~0.2m	34°53'59"	112°51'3"
T8 前处理车间西侧	0~0.2m	34"53'58"	112°50′57"
T9 染色干洗车间西侧	0-0.2m	34°53'56"	112°50′56"
T10 化料仓库东侧	0-0.2m	34°54'0"	112°51'3"
T11 染色浸敷鞣制车间东侧	0-0.2m	34°53'56"	112°51'2"
T12 涂饰烫剪同东侧	0-0.2m	34°53'55"	112*51'2"
Company on the second season and the contract of the contract			

地下水采样点位坐标点

采样地点	静水位	非課	纬度	经度
DI 项目上游水井	10m	30m	34°54'2"	112°50'54"
D2 厂区水井	10m	30m	34°53'54"	112°50'59"

土壤检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	松世界 mg/kg
1	pH f/L	土壤中 pH 值的测定 玻璃电极法	NY/T 1377-2007	DZS-706 多参数 分析仅	Ł
2	福	土壤质量 铅、镉的 網定 石墨炉原子吸 收分光光度法	GB/T 17141-1997	石墨炉原子吸收 分光光度计 /PinAAcle900	0.01
3	借				2.0
4	络			X-射线荧光光谱 仅/S8 Tigor	3.0
5	併				1.2
6	锌	土壤和沉积物 无机			2.0
7	10.	元素的測定 波长色 数 X 射线荧光光谱	HJ 780-2015		1.5
8	耕	法		LC100 Tigur	2.0
9	松	1955		3	10.0
10	钴				1.6
11	铁				4.0

地址。济阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20201179A

第6页共7页

土壤检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	松出區 mg/kg
12	额	土壤和沉积物 汞、		X SAN ESSA	10.0
13	汞	砷、硒、铋、锌的测 定 微波消解/原子	HJ 680-2013	原子荧光光谱仪 /AF-7500	0.002
14	#	荧光法			0.01
15	镀	固体废物 22 种金 属元素的测定 电器 耦合等离子体发射 光谱法	НЈ 781-2016	电感耦合等离子 体发射光谱仪 /Optima 8000	0.04
16	能	土壤和沉积物 蛇的 测定 石墨炉原子吸 枚分光光度法	HJ 1080-2019	石墨炉源子吸收 分光光度计 /PinAAcle900	0.1
17	93	固体废物 被僱領和 钼的测定 石墨炉原 子吸收分光光度法	HJ 752-2015	石墨炉原子吸收 分光光度计 /PinAAcle900	0,8

地下水检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	救出限 mg/L
1	pH ffL	水质 pH 值的测定 玻璃电极法	GB/T 6920-1986	DZS-706多参数 分析仪	1
2	46	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 9.1	石墨炉原子吸收	0.5µg/L
3	10	无火焰原子吸收分 光光度法	GB/T 5750.6-2006 11.1	分光光度计 /PinAAcle900	2.5µg/L
4	铬	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 1.4	电感耦合等离子	0.019
5	報	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 1.4	体发射光谱仪 /Optima 8000	0.009

地址: 洛阳市西工区王城大道 69 号

Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20201179A

第7页共7页

地下水检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	救出限 mg/L	
6	钟	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 5.5	电镀耦合等离子	0.001	
7	築	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 15.2	体发射先谱仪 /Optima 8000	0.006	
8	iñ				0.4 µg/L	
9	汞	水质 汞、砷、硒、		原子荧光光谱仪/	0.04µg/L	
10	种	够和锑的测定 原 子类光法	HJ 694-2014	AF-7500	0.3μg/L	
11	580				0.2µg/L	
12	槛		GB/T 5750.6-2006 3.5		0.0005	
13	钴		GB/T 5750.6-2006 14.2		0.0025	
14	恢	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 18.2	电缆耦合等离子	0.005	
15	惟	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 21.2	体发射光谱仪 /Optima 8000	0.04	
16	쓮		GB/T 5750.6-2006 20.4		0.0002	
17	48		GB/T 5750.6-2006 13.2		0.008	

(以下空白)

地址: 洛阳市西工区王城大道 69 号

检测报告

TEST REPORT

报告编号: LMH20191287A

样品名称:土壤、地下水

委托单位: 孟州市光宇皮业有限公司

检测类别: 委托检测

洛阳黎明检测服务有限公司

Luoyang Liming Testing and Service Co. Ltd.

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20191287A

第1页共7页

地下水 光宇皮业有限公司 学 191287-1~14	检测类别 委 托 人 样品状态 样品数量 到样日期	9 91 91
191287-1~14	样品状态样品数量	正常 14
191287-1~14	样品数量	14
	到样日期	2019.9,19
	0 107 1	
5果		
長児第 2-6 页。	25.0	日期: 2019年10月15日
9 9 9	- (33)	144 - 15 (
	^{申模:} │35	

地址,洛阳市王城大道 69 号

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

150

第2页共

报告编号: LMH20191287A 土壤检测结果

持機能能 0-0.2m 8.68 0.036 28.3 79.1 32.2 80.4 37.6 0 2排口預測 0-0.2m 8.71 0.031 22.0 75.1 26.3 69.1 31.9 0 建基线控制 0-0.2m 8.77 0.030 22.2 119 30.5 87.1 32.0 0 临时堆场 0-0.2m 8.31 0.044 28.8 206 33.8 84.3 38.0 0 临时堆场 0-0.2m 8.74 0.030 22.3 93.0 29.5 75.4 38.0 0 所有中面有 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0 新二号车间有剩 0-0.2m 8.88 0.032 25.0 77.6 30.8 76.1 31.8 0 条车间直剩 0-0.2m 8.88 0.032 25.0 77.6 30.8 70.1 44.9 0 餐車負用表側 0-0.2m 8.61 0.043 26.9	检测点位		Ha	200	40	200	853	44	1	Per A. M. St. J. P. C. I. III. J. K.	W.: mg/s
計画機構 0-0.2m 8.68 0.036 28.3 79.1 32.2 80.4 37.6 0.013 2排口機劃 0-0.2m 8.71 0.031 22.0 75.1 26.3 69.1 31.9 0.003 環境性域 0-0.2m 8.77 0.030 22.2 119 30.5 87.1 32.0 0.011 監視機構 0-0.2m 8.31 0.044 28.8 206 33.8 84.3 38.0 0.011 環境技術 0-0.2m 8.74 0.030 22.3 93.0 29.5 75.4 41.2 0.011 環境技術 0-0.2m 8.78 0.043 26.9 83.9 26.9 71.1 31.8 0.013 養年间西衛 0-0.2m 8.88 0.032 25.0 77.6 30.2 74.9 0.028 食業有所者側 0-0.2m 8.61 0.043 27.5 81.1 30.4 75.1 34.1 0.029 建資用表類 0-0.2m 8.60 0.034 26.0 </th <th>THE PART OF STATE OF</th> <th></th> <th></th> <th>100</th> <th>1111</th> <th>103</th> <th>194</th> <th>da</th> <th>格</th> <th>*</th> <th>100</th>	THE PART OF STATE OF			100	1111	103	194	da	格	*	100
2排口預報 0-0.2m 8.71 0.031 22.0 75.1 26.3 69.1 31.9 0.013 建基系度預報 0-0.2m 8.57 0.030 22.2 119 30.3 87.1 32.0 0.003 建基度度指数 0-0.2m 8.31 0.044 28.8 206 33.8 84.3 38.0 0.0014 处理系统比例 0-0.2m 8.74 0.030 22.3 93.0 29.5 75.4 38.7 0.009 所有的數 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0.009 指有的所 0-0.2m 8.78 0.043 26.9 83.9 26.9 71.1 31.8 0.013 生间两期 0-0.2m 8.87 0.032 25.0 77.6 30.2 74.0 41.2 0.009 化库库利的 0-0.2m 8.61 0.043 26.9 86.7 30.4 71.1 34.1 0.009 建作有的 0-0.2m 8.61 0.0	11 / 18 外四北水田	0-0.2m	8.68	0.036	28.3	79.1	10.0	80.4	346	0.010	200
理 提 提 接 性 其 接 其 接 其 接 其 有 其 有 其 有 其 有 其 有 其 有 其 有 有 日 有 有 有 日 有 有	12 陇木总排口西侧	0-0.2m	8.71	0.031	33.0			6000	37.0	0.013	10.8
(2.5.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		0.00	1	0.001	0.22	13.1	5.07	69.1	31.9	0.003	10.1
陰时葉揚 0-0.2m 8.31 0.044 28.8 206 33.8 84.3 38.0 0.0114 处理系统末档 0-0.2m 8.74 0.030 22.3 93.0 29.5 75.4 38.7 0.009 日系统东北網 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0.011 附二号车间系制 0-0.2m 8.88 0.032 25.0 77.6 30.2 71.1 31.8 0.015 车间两侧 0-0.2m 8.87 0.032 25.9 86.7 30.8 80.2 44.9 0.028 程庫有面 0-0.2m 8.61 0.043 27.5 81.1 30.4 73.1 34.1 0.022 羅賴本国条網 0-0.2m 8.61 0.043 27.5 81.1 30.4 73.1 34.1 0.022 建稅用地工環沿泉風险管控系 / 65 80.0 78.0 29.6 76.2 34.7 0.019 建稅用地工環沿泉風险管控系 / 65 80.0 / 1800 / 1800 / 900 38		0-0.2m	8.57	0.030	22.2	119	30.5	87.1	32.0	0.011	0.00
と理義策北橋	T4 危败临时增扬	0-0.2m	8.31	0.044	38.80	2000	33.0	0.10	O.a.c.	0.011	10.0
振旋集走橋 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0.009 暦二号车间车側 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0.011 年间西側 0-0.2m 8.88 0.032 25.0 77.6 30.2 74.0 41.2 0.009 先年同西側 0-0.2m 8.87 0.032 26.9 86.7 30.8 80.2 44.9 0.028 程庫本側 0-0.2m 8.61 0.043 27.5 81.1 30.4 73.1 34.1 0.022 軽削车间条側 0-0.2m 8.60 0.034 26.0 78.0 29.6 76.2 34.7 0.019 建設開走機 0-0.2m 8.58 0.033 24.4 76.2 24.5 71.5 29.0 0.015 建設開進上環沿鉄風途管控鉄 65 800 / 1800 / 900 38	15 含铬废水处坦系徐北如	0-0 2m	6.74	0000	000	DAY.	33.0	84.5	38.0	0.014	11.7
長院後末北側 0-0.2m 8.78 0.039 23.8 76.9 30.8 76.4 41.2 0.011 附二号年间系側 0-0.2m 8.39 0.043 26.9 83.9 26.9 71.1 31.8 0.015 年间西側 0-0.2m 8.88 0.032 25.0 77.6 30.2 74.0 41.2 0.009 先年時西側 0-0.2m 8.87 0.032 26.9 86.7 30.8 80.2 44.9 0.028 経庫本間系側 0-0.2m 8.61 0.043 27.5 81.1 30.4 73.1 34.1 0.022 提脚本面条側 0-0.2m 8.50 0.034 26.0 78.0 29.6 76.2 34.7 0.019 建設開施工業污染風险管控练 65 80.3 24.4 76.2 24.5 71.5 29.0 0.015 建設開施工業污染風险管控線 65 80 78.0 29.6 76.3 34.7 0.015 計336600-2018) 競速債第二款 65 80 78 80 7 80 34.5 71.5 29.0 0.015	700000000000000000000000000000000000000	O VICENIA	0.14	0.0.50	577.3	93.0	29.5	75.4	38.7	0.000	101
降二号车间系側) 0-0.2m 8.39 0.043 26.9 83.9 26.9 71.1 31.8 0.013 手向西側 0-0.2m 8.88 0.032 25.0 77.6 30.2 74.0 41.2 0.009 汽车両西側 0-0.2m 8.87 0.032 26.9 86.7 30.8 80.2 44.9 0.028 経庫素制 0-0.2m 8.61 0.043 27.5 81.1 30.4 73.1 34.1 0.022 採削车回条側 0-0.2m 8.60 0.034 26.0 78.0 29.6 76.2 34.7 0.019 建設用施工環沿染風险管控泳 65 800 / 18.00 / 900 38	mul-	0-0.2ш	8.78	0.039	23.8	76.0	20.6	176	41.5	10000	1.00
年间西側 0-0.2m 8.88 0.032 25.9 77.6 30.2 71.1 31.8 0.015 先年间西側 0-0.2m 8.88 0.032 25.0 77.6 30.2 74.0 41.2 0.009 仓库表樹 0-0.2m 8.61 0.043 27.5 81.1 30.4 75.1 34.1 0.028 韓国有美樹 0-0.2m 8.60 0.034 26.0 78.0 29.6 76.2 34.7 0.019 建與同來廳 0-0.2m 8.58 0.033 24.4 76.2 24.5 71.5 29.0 0.015 建设用地上環沿線 6.5 800 / 18000 / 900 38	部	0-0 2m	8 20	0.043	97.0	2000	20.0	10.4	41.2	0.011	12.3
24.3	The ship for the first term have		0002	0.043	6.02	83.9	56.9	71.1	31.8	0.015	0.6
2 中 法	18 的处理华内内别	0-0.2m	8.88	0.032	25.0	77.6	30.5	74.0	41.0	0.000	
と特色库表樹 0-0.2m 8.61 0.043 27.5 81.1 30.4 75.1 34.1 0.022 (- 202	T9 染色干洗车间西侧	0-0.2m	8.87	0.032	94.0	0.6.7	40.0	200	717	6000	13.4
2.202		000	1	-	4000	7100	30.8	80.2	44.9	0.028	12.6
2般鞣制车间条侧 0-0.2m 8.60 0.034 26.0 78.0 29.6 76.2 34.7 0.019 1 1		V-0,4III	8,01	0.043	27.5	81.1	30.4	73.1	34.1	0.000	0.0
施提對间系態 0-0.2m 8.58 0.033 24.4 76.2 24.5 71.5 29.0 0.015 量建设用地土壤污染风险管控标 65 800 / 18000 / 900 38	TII 炎色浸酸鞣制车间系侧	0-0.2m	8.60	0.034	26.0	78.0	20.6	76.7	21.7	2000	0.7
量建设用地上集污染风险管控标 65 800 / 18000 / 900 38	T12 徐饰谈剪间来侧	0-0.2m	8 58	0.033	24.4	27.3		7007	34.7	610.0	10.2
- 東京は X 用地工集75条人位音程が 65 800 / 18000 / 900 38 (GB36600-2018) 総進債第二巻 65 800 / 18000 / 900 38	A. Artife E.T. Sale and Mile week S.D. stars (A. F. Sales) and a		-	CONTRACT	57.74	707	24.5	71.5	29.0	0.015	8.5
	(GB36600-	《股管控标》 等值第二类	-	99	800	-	18000	1	006	38	9

地址, 洛阳市王城大道 69 号

电话: (6379) 62301610

Luoyang Liming Testing and Service Co. Ltd. 检测报告 洛阳黎明检测服务有限公司

Test Report

K 共7

第3页

报告编号; LMH20191287A 土壤检测结果

T1 厂区外南北农田 0-0.2m T2 核水总排口所侧 0-0.2m	100	100			1,4440	37.5		
/ X外南北农田 版本总排口西侧			181	5	28	200	205	115
	m 652	14,6	0.498	0.06	0.406	2.90	***	
	202			2000	O'CLEON	2.70	01.10	1.1
		15.5	0.531	78.5	0,387	3.45	060	-
13 75 水 处 埋 系 筏 内 割 0-0.2 m	m 580	13.5	0.457	20.6	0.360	20.0	1	
T4 危機临时堆场 0-0.2m	708	1961	4 10.5	000	00000	+6.7	67.0	1.1
	-	10.1	0.485	47.66	0.141	3.39	06.0	1.0
B的成本处理系统定值	m 611	13.7	0.393	6.28	0.000	***	***	
T6 污水处理系统东北侧 0-02	m 611	13.0	0.102	100	24.00	3.31	1.32	2.0
銀外国本国「第一以内信か強、	1	100	0,463	9374	0.122	2.42	1.06	2.5
- 四十五十四条第二	m 622	12.9	0.365	90.3	0000	2.63	1 10	
T8 前处理车间两侧 0~0.23	m 619	14.3	0.467	0.00	to and	2000	1.19	2.4
70 协格干油在临床库	-	1	0.407	2117	0.396	3.59	1.04	1.6
	п 651	15.1	0.474	93.0	00100	200		-
T10 化料仓库东侧 0-0.2m	n 635	14.0	0.583	2.98	0000	200	1.24	1.8
TII 染色浸酸鞣制车间东侧 0-0.2m		12.7	0.400	25000	745.0	5.44	1.05	1.7
After the control of the		4.3.4	0.485	89.0	0.109	3.53	1.11	1.4
100	n 558	12.1	0.544	78.6	0.100	4.54	000	1
《土壤环境质量建设用地土壤污染风险管控标准》	(3	20		-	20100	477	0.88	13

地址: 洛阳市王城大道69号

(0379) 62301610 电话。

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报	告	綸	号:	LMH20191	287A
				144:10	

第4页共7页

地下水检测结果		(pH	无量纲)单位: mg/L
检测项目 D	1 項目上游水井	D2 厂区水井	依据 14848-2017 中 地下水质量常規III 类指标限值
pH	7.50	7.47	6.5≤pH≤8.5
fiff. mg/L	未检出	未检出	≤0.005
铅,mg/L	未检出	未检出	≤0.01
俗。mg/L	未检出	未輸出	1
fil. mg/L	未检出	未检出	≤1.00
锌, mg/L	0.010	0.013	≤1.00
₩, mg/L	未检出	未检出	≤0.02
汞, mg/L	未检出	未检出	≤0.001
柳, mg/L	0.0005	0.0005	≤0.01 ≤0.10
₩. mg/L	0.0022	0.0009	
钴、mg/L	5. mg/L 未检出		≤0.005
硒, mg/L	未检出	未检出	≤0.01
iR. mg/L	未检出	未輸出	1
锑· mg/L	未检出	未检出	≤0.005
钜,mg/L	未检出	未检出	≤0.0001
钹。mg/L	0.0014	0.0012	≤0.002
fill- mg/L	未检出	未检出	≤0.07
土壤采样点位坐标点			
采样地点	采样位置	经度	纬度
TI 厂区外西北农田	0~0.2m	34°53'03.42"	112°50′53.49″
T2 废水总排口西侧	0~0.2m	34°53'02.27"	112°50′53.92"
T3 污水处理系统西侧	0-0.2m	34°53′58.18″	112°50′53.58″
T4 危废临时堆场	0~0.2m	34"53"54.43"	112°50′53.14″
T5 含铬废水处理系统北侧	0-0.2m	34°53′54.20"	112°50′55.42"
T6 污水处理系统东北侧	0-0.2m	34°54'01.17"	112°50′56.06"

地址:洛阳市王城大道 69 号

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20191287A 土壤采样点位坐标点

第5页共7页

采样地点	采样位置	经度	纬度
T7 前处理车间(附二号车 间东侧)	0-0.2m	34°53′59.04″	112°51'03.21'
T8 前处理车间西侧	0-0.2m	34"53'58.65"	112°50′56.81″
T9 染色干洗车间西侧	0-0.2m	34"53'57.04"	112°50′56.51"
T10 化料仓库东侧	0~0.2m	34°54'00.07"	112°51'03.25"
T11 染色浸酸鞣制车间东侧	00.2m	34°53'56.70"	112°51'02.82"
T12 涂饰烫剪间东侧	0~0.2m	34°53′54.72″	112°51'02.71"

采样地点	静水位	井深	经度	纬度
D1 项目上游水井	10m	30m	34°53′2.37"	112°50′54.16″
D2 厂区水井	10m	30m	34°53'54.18"	112°50′59.23"

土壤检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	校出限 mg/kg
1	pH 值	土壤中 pH 值的测定 玻璃电极法	NY/T 1377-2007	DZS-706 多参数 分析仪	1
2	镉	土壤质量 铅、锡的 測定 石墨炉原子吸 收分光光度法	GB/T 17141-1997	石墨炉原子吸收 分光光度计 /PinAAcle900	0.01
3	1/1			X-射线荧光光谱 仅/S8 Tiger	2.0
4	9%				3.0
5	铜				1.2
6	49	土壤和沉积物 无机			2.0
7	傑	元素的测定 波长色	HJ 780-2015		1.5
8	動車	散 X 射线荧光光谱 法			2.0
9	號				10.0
10	钴	2 2 3		9 9 4	1.6
11	钒			-	1.0

地址:洛阳市王城大道 69 号

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告 Test Report

报告编号: LMH20191287A

第6页共7页

1

1

土壤检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	检出限 mg/kg
12	極	土壤和沉积物 汞、	9 9	10/10/19	0.01
13	汞	一	HJ 680-2013	原子荧光光谱仪 /AF-7500	0.002
14	196	荧光法	7 7		0.01
15	餀	固体废物 22 种金 属元素的测定 电感 耦合等离子体发射 光谱法	HJ 781-2016	电感耦合等离子 体发射光谱仪 /Optima 8000	0.04
16	馆	石墨炉原子吸收法	《土壤元素的 近代分析方 法》中国环境 监测总站	石墨炉原子吸收 分光光度计 /PinAAcle900	2.72 µg/L
17	411	固体废物 镀镍铜和 钼的测定 石墨炉原 子吸收分光光度法	HJ 752-2015	石服炉原子吸收 分光光度计 /PinAAcle900	0.8

地下水检测分析方法及仪器一览表

序号	检测项目	分析方法	方法来源	仪器名称及型号	检出路 mg/L
1	pH 值	水质 pH 值的测定 玻璃电极法	GB/T 6920-1986	DZS-706多参数 分析仪	1
2	铽	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 9.1	石墨炉原子吸收	0.5µg/1
3	969	无火焰原子吸收分 光光度法	GB/T 5750,6-2006 11.1	分光光度计 /PinAAcle900	2.5µg/L
4	48	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 1.4	电感耦合等离子	0.019
5	\$16	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 1.4	体发射光谱仪 /Optima 8000	0.009

地址: 洛阳市王城大道 69号

洛阳黎明检测服务有限公司 Luoyang Liming Testing and Service Co. Ltd. 检测报告

Test Report

报告编号: LMH20191287A

第7页共7页

地下水检测分析方法及仪器一览表

序号	检测项目	分析方法	方法來源	仪器名称及型号	检出限 mg/L
6	భ	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 5.5	电感耦合等离子	0.001
7	693	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 15.2	体发射光谱仪 /Optima 8000	0.006
8	65	y 100 (10)	100	er/ 107 1	0.4 μg/I
9	汞	水质 汞、砷、硒、		原子荧光光谱仪/	0.04µg/l
10	69	铋和铋的测定 原 子荧光法	HJ 694-2014	AF-7500	0.3μg/L
11	140	7 5 6			0.2μg/L
12	A.F	0 20 3	GB/T 5750.6-2006 3.5	9 9 3	0.0005
13	钻	7 2 2	GB/T 5750.6-2006 14.2	9 9 9	0.0025
14	钒	生活饮用水标准检 验方法 金属指标	GB/T 5750.6-2006 18.2	电感耦合等离子	0.005
15	铊	电感耦合等离子体 发射光谱法	GB/T 5750.6-2006 21.2	体发射光谱仪 /Optima 8000	0.04
16	铍		GB/T 5750.6-2006 20.4	3 9 3	0.0002
7	(1)		GB/T 5750.6-2006 13.2	331	0.008

(以下空白)

地址:洛阳市王城大道 69号

河南晨颉检验技术有限公司

检 测 报 告

报告编号: CJ2023WT0670

项目名称: 孟州市光宇皮业有限公司比对检测

委托单位: 孟州市光宇皮业有限公司

检测类别: 有组织废气污染物

报告日期: _____ 2023年8月1日

河南晨颉检验技术有限公司制

检测报告说明

- 1、本报告无公司检验检测专用章、骑缝章及 🚾 章无效。
- 2、报告内容需填写齐全,无审核签发者签字无效。
- 3、由委托单位自行采集的样品,仅对送检样品检测数据负责,不对样品来源负责;由本公司采集样品,检测结果仅对检测期间样品负责;无法复现的样品,不受理申诉。
- 4、本报告未经同意不得用于广告宣传。
- 5、复制本报告中的部分内容无效。

河南晨颉检验技术有限公司

地 址: 焦作市示范区玉溪路 1129 号总部新城 (南区) 52 号楼

邮 编: 454000

电话: 0391-2630100

传 真: 0391-2630100

河南晨颜检验技术有限公司制

1 概述

受孟州市光宇皮业有限公司委托,河南晨颉检验技术有限公司对该公司有组织废气污染物进行了采样检测。采样期间工况:75%(由企业提供),环保设施运行正常。

被测单位地址:河南省孟州市南庄镇毛皮产业园内

联系人: 杨杰

联系电话: 15993712224

采样时间: 2023.7.27

检测时间: 2023.7.27-2023.7.29

2 检测内容

2.1 废气污染物检测内容见表 2-1

2. 1 100	以7未101型/则内各见农 Z-1
表 2-1	废气污染物检测内容一览表

检测类别	检测点位	检测因子	检测频次
有组织 废气	天然气锅炉(10t/h) 废气排放口 (低氦燃烧+烟气再循环)	烟气流量、烟气黑度、0, 颗粒物、氮氧化物、二氧化硫排放浓度 颗粒物、氮氧化物、二氧化硫排放浓率	1周期/年3次/1周期

3 分析方法及使用仪器

3.1 有组织废气污染物检测分析方法及使用仪器见表 3-1

表 3-1	有组织废气污染物检测。	分析方法及使用	仪器一览表 单位	ĭ: mg/m
检测项目	检测方法	方法来源	使用仪器及编号	检出限
颗粒物	固定污染源废气 低浓度颗粒物的测 定 重量法	НЈ 836-2017		1.0
二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法	HJ 57-2017	TW-3200 自动 烟尘 (气) 测试仪	3
氮氧化物	固定污染源废气 氯氧化物的测定 定电位电解法	НЈ 693-2014	(CJY-02-2021)	3

河南晨颜检验技术有限公司制

O_2	固定源废气监测技术规范 (6.3.3 电化学法测定 0,)	HJ/T 397-2007		1
烟气流量	固定污染源排气中颗粒物测定与气态污染物采样方法(7 排气流速、流量的测定)皮托管平行测速采样法	GB/T 16157-1996 及修 改单		1
烟气黑度	测烟望远镜法	《空气和废气监 鹅分析方法》(第 四版)第五篇 第 三章 第三节 国 家环境保护总局 (2003 年)	LB-802 林格曼測 烟望远镜 (BSLS-12-2019)	1

4 检测分析结果

4.1 有组织废气污染物检测结果见表 4-1、4-2

表 4-1

有组织废气污染物检测结果一览表

检测日期	检测点位		检测频次	烟气黑度 (级)
	T All Art HI Lb. (a.e. a.e.)		第一次	1
2023. 7. 27	天然气锅炉(10t/h) 废气排放口 (低氯燃烧+烟气再循环)	周期	第二次	1
	AND MARKET AND CHARGES	-	第三次	1

河南晨颉检验技术有限公司制

报告编号: CJ2023#T0670

表 4-2

有组织胺气污染物检测结果一带表

						额	颗粒物		1	二氧化硫		減	氮氧化物	
检测日期	检测点位	-	检测频次	類气流量 (m/h)	排放(mg	排放浓度 (mg/m²)	排放	提放 (mg.	排放浓度 (mg/m²)	排放	書成	排放浓度 (mg/m²)		ð 8
					埃麗	折算	(kg/h)	张麗	岩質	選業 (kg/h)	张嘉	岩質	選挙 (kg/h)	
	天然气锅炉(100-14-) 県		第一次	3,75×10°	3.0	2.6	0.0112	m	62	0.0112	88	91	0.0675	1.1
2023, 7, 27		医器	然二年	3.94×10°	2.8	2,5	0.0110	65	23	0.0118	4	4	0.0158	1.3
	烟气再循环)		然三张	4.09×10³	3.1	8 3	0.0127	62	63	0.0123	্ৰ	4	0 0164	-

5 检测质量控制

本次检测采样及样品分析均严格按照相关国家标准要求进行,实施全程序质量控制。具体质控要求如下;

- 检测分析方法采用国家颁布的标准(或推荐)分析方法,检测人员经过考核并持有合格证书。 5. 1
 - 5.2 所有检测仪器经过计量部门检定合格并在有效期内。
- 5.3 检测数据严格实行三级审核。

7.

5.4 检测期间,该工程生产工况达到相关要求;质量监督员现场监督检查检测质量并填写质量监督检查表。

河南晨额检验技术有限公司制

5.5 废气检测:检测前用流量校准器对检测仪器进行校准并现场检漏,测 定前、后对仪器进行性能审核并记录存档颗粒物做一全程序空白。

6 检测人员

邱蒙超 曹博 褚洁

编制人: 游客 审核人: /3 // 签发人: 小龙

日期: 2023.8. 日期: 2023.8.1 日期: 2023.8.1

河南晨颉检验技术有限公司 (加盖检验检测专用章)

报告结束

河南晨颉检验技术有限公司制

省级生态环境网站:北京 天津 上海 重庆 河北 山西 辽宁 吉林 黑龙江 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 海南 四川 贵州 云南 陝西 甘肃 青海 西藏自治区 内蒙古目治区 广西壮族自治区 分享回族自治区 新疆维尔吾自治区 新疆维尔吾自治区 新疆维尔 国家生态环境网站: 生态环境部

友情链接: 排污许可平台 环评信用平台 自主验收平台 土壤信息平台 环境工程服务 环境质量模拟